Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 360-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

Global solvability of a boundary value problem for nonlinear mass-transfer equations under innhomogeneous Dirichlet condition for substance's concentration is proved. For a velocity vector we use a homogeneous Dirichlet condition. The model under consideration generalizes the Boussinesq approximation since the reaction coefficient depends nonlinearly on substance's concentration and depends on spatial variables. Sufficient conditions were established for initial data of boundary value problem under which its solution is unique and also there were determined the conditions under which the maximum principle for substance's concentration is valid.
Keywords: nonlinear mass-transfer model, generalized Boussinesq model, global solvability, maximum principle.
Mots-clés : reaction coefficient
@article{SEMR_2022_19_1_a24,
     author = {Zh. Yu. Saritskaya},
     title = {Boundary value problem for nonlinear mass-transfer equations under {Dirichlet} condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {360--370},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a24/}
}
TY  - JOUR
AU  - Zh. Yu. Saritskaya
TI  - Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 360
EP  - 370
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a24/
LA  - ru
ID  - SEMR_2022_19_1_a24
ER  - 
%0 Journal Article
%A Zh. Yu. Saritskaya
%T Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 360-370
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a24/
%G ru
%F SEMR_2022_19_1_a24
Zh. Yu. Saritskaya. Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 360-370. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a24/

[1] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 13:4 (1997), 995–1013 | DOI | MR | Zbl

[2] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 9:6 (1998), 521–562 | MR | Zbl

[3] G.V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Sib. Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl

[4] P.A. Nguyen, J.-P. Raymond, “Control problems for convection-diffusion equations with control localized on manifolds”, ESAIM Control Optim. Calc. Var, 6 (2001), 467–488 | DOI | MR | Zbl

[5] G.V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations”, Comp. Math. Math. Phys., 47:6 (2007), 1007–1028 | DOI | MR | Zbl

[6] G.V. Alekseev, D.A. Tereshko, “Extremum problems of boundary control for steady equations of thermal convection”, J. Appl. Mech. Tech. Phys., 51:4 (2010), 510–520 | DOI | MR | Zbl

[7] P.A. Nguyen, J.-P. Raymond, “Pointwise control of the Boussinesq system”, Syst. Control Lett., 60:4 (2011), 249–255 | DOI | MR | Zbl

[8] A.I. Korotkii, D.A. Kovtunov, “Optimal boundary control of a system describing thermal convection”, Proc. Steklov Inst. Math., 272, Suppl. 1 (2011), S74–S100 | DOI | MR | Zbl

[9] G.V. Alekseev, V.G. Romanov, “On a class of nonscattering acoustic shells for a model of anisotropic acoustics”, J. Appl. Industr. Math., 6:1 (2012), 1–5 | DOI | MR | Zbl

[10] G.V. Alekseev, V.A. Levin, “The optimization method in design problems of spherical layered thermal shells”, Doklady Physics, 62:10 (2017), 465–469 | DOI | MR

[11] R.V. Brizitskii, Z.Y. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, J. Inv. Ill-Posed Probl., 26:6 (2018), 821–833 | DOI | MR | Zbl

[12] V.D. Fachinotti, A.A. Ciarbonetti, I. Peralta, I. Rintoul, “Optimization-based design of easy-to-make devices for heat flux manipulation”, Int. J. Thermal Sciences, 128 (2018), 38–48 | DOI

[13] G.V. Alekseev, D.A. Tereshko, “Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices”, Int. J. Heat and Mass Transfer., 135 (2019), 1269–1277 | DOI

[14] S.A. Lorca, J.L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Differ. Equations, 124:2 (1996), 389–406 | DOI | MR | Zbl

[15] A. Belmiloudi, “Robin-type boundary control problems for the nonlinear Boussinesq type equations”, J. Math. Anal. Appl., 273:2 (2002), 428–456 | DOI | MR | Zbl

[16] A. Bermúdez, R. Muñoz-Sola, R. Vázquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. Anal. Appl., 368:2 (2010), 444–468 | DOI | MR | Zbl

[17] R.V. Brizitskii, Zh.Yu. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Syst., 27:2 (2021), 379–402 | DOI | MR | Zbl

[18] M. Růžička, V. Shelukhin, M.M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Methods Appl. Sci., 40:7 (2017), 2746–2761 | DOI | MR | Zbl

[19] V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, J. Non-Newton. Fluid Mech., 262 (2018), 25–37 | DOI | MR

[20] A.E. Mamontov, D.A. Prokudin, “Solvability of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | MR | Zbl

[21] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-omponent viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812 | DOI | MR | Zbl

[22] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl

[23] R.V. Brizitskii, Zh.Yu. Saritskaya, “Boundary value and extremal problems for the nonlinear convection-diffusion-reaction equation”, Sib. Èlectron. Mat. Izv., 12 (2015), 447–456 | MR | Zbl

[24] R.V. Brizitskii, Z.Y. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection-diffusion-reaction equation”, Sib. Èlectron. Mat. Izv., 13 (2016), 352–360 | MR | Zbl

[25] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions of control problems for the convection-diffusion-reaction equation with a strong nonlinearity”, Dif. Equ., 53:4 (2017), 485–496 | DOI | MR | Zbl

[26] R.V. Brizitskii, Z.Y. Saritskaya, “Inverse coefficient problems for a non-linear convection-diffusion-reaction equation”, Izv. Math., 82:1 (2018), 14–30 | DOI | MR | Zbl

[27] R.V. Brizitskii, Z.Y. Saritskaya, “Boundary control problem for a nonlinear convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 58:12 (2018), 2053–2063 | DOI | MR | Zbl

[28] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl

[29] A.Yu. Chebotarev, A.E. Kovtanyuk, G.V. Grenkin, N.D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comput., 289 (2016), 371–380 | MR | Zbl

[30] A.Y. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM, Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl

[31] G.V. Alekseev, Optimization in the stationary problems of the heat-mass transfer and magnetic hydrodynamics, Nauchiy Mir, M., 2010

[32] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1998 | MR | Zbl

[33] H. Berninger, “Non-overlapping domain decomposition for the Richards equation via superposition operators”, Domain decomposition methods in science and engineering XVIII, Selected papers based on the presentations at the 18th international conference of domain decomposition methods (Jerusalem, Israel, January 12-17, 2008), eds. Bercovier M. et al., Springer, Berlin, 2009, 169–176 | DOI | MR | Zbl

[34] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and quasilinear elliptic equations, Mathematics in Science and Engineering, 46, Academic Press, New York-London, 1968 | MR | Zbl