Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 309-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we are devoted to study the conditional regularity for the three dimensional Navier-Stokes in terms of the Morrey and $BMO$ spaces. More precisely, we show that if $u$ is a weak solution and $u_{3}\in L^{2}(0,T;BMO(\mathbb{R}^{3}))$ and $\omega _{3}\in L^{ \frac{2}{2-r}}(0,T;\mathcal{\dot{M}}_{2,\frac{3}{r}}(\mathbb{R}^{3}))$ with $0$, then $u$ is regular on $(0,T]$. This improves the available result by Zhang (2018) with $u_{3}\in L^{2}(0,T;L^{\infty }(\mathbb{R}^{3}))$ and $\omega _{3}\in L^{\frac{2}{2-r}}(0,T;L^{\frac{3}{r}}(\mathbb{R}^{3}))$ with $0$.
Keywords: Navier-Stokes equations, regularity criteria, Morrey space.
@article{SEMR_2022_19_1_a23,
     author = {Ahmad M. Alghamdi and Sadek Gala and Maria Alessandra Ragusa},
     title = {Regularity criterion for weak solutions to the {Navier-Stokes} involving one velocity and one vorticity components},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {309--315},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a23/}
}
TY  - JOUR
AU  - Ahmad M. Alghamdi
AU  - Sadek Gala
AU  - Maria Alessandra Ragusa
TI  - Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 309
EP  - 315
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a23/
LA  - en
ID  - SEMR_2022_19_1_a23
ER  - 
%0 Journal Article
%A Ahmad M. Alghamdi
%A Sadek Gala
%A Maria Alessandra Ragusa
%T Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 309-315
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a23/
%G en
%F SEMR_2022_19_1_a23
Ahmad M. Alghamdi; Sadek Gala; Maria Alessandra Ragusa. Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 309-315. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a23/

[1] H. Beirão da Veiga, “A new regularity class for the Navier-Stokes equations in $\mathbb{R ^{n}}$”, Chin. Ann. Math. Ser. B, 16:4 (1995), 407–412 | MR | Zbl

[2] C.S. Cao, “Sufficient conditions for the regularity to the 3D Navier-Stokes equations”, Discrete Contin. Dyn. Syst., 26:4 (2010), 1141–1151 | DOI | MR | Zbl

[3] C. Cao, E.S. Titi, “Regularity criteria for the three-dimensional Navier-Stokes equations”, Indiana Univ. Math. J., 57:6 (2008), 2643–2661 | DOI | MR | Zbl

[4] C. Cao, E.S. Titi, “Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor”, Arch. Ration. Mech. Anal., 202:3 (2011), 919–932 | DOI | MR | Zbl

[5] R. Coifman, P.L. Lions, Y. Meyer, S. Semmes, “Compensated compactness and Hardy spaces”, J. Math. Pures Appl., IX. Sér., 72:3 (1993), 247–286 | MR | Zbl

[6] E.B. Fabes, B.F. Jones, N.M. Riviere, “The initial value problem for the Navier-Stokes equations with data in $L^{p}$”, Arch. Ration. Mech. Anal., 45 (1972), 222–240 | DOI | MR | Zbl

[7] G. Di Fazio, M.A. Ragusa, “Commutators and Morrey spaces”, Boll. Un. Mat. Ital., VII. Ser., A, 5:3 (1991), 323–332 | MR | Zbl

[8] B.Q. Dong, Z.F. Zhang, “The BKM criterion for the 3D Navier-Stokes equations via two velocity components”, Nonlinear Anal., Real World Appl., 11:4 (2010), 2415–2421 | DOI | MR | Zbl

[9] L. Escauriaza, G.A. Serëgin, V. Šhverák, “$ L_{3,\infty }$-solutions of Navier-Stokes equations and backward uniqueness”, Russ. Math. Surv., 58:2 (2003), 211–250 | DOI | MR | Zbl

[10] S. Gala, “A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations”, Appl. Math. Comput., 217:22 (2011), 9488–9491 | MR | Zbl

[11] S. Gala, M.A. Ragusa, “Improved regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component”, SN Partial Differ. Equ. Appl., 2:3 (2021), 41 | DOI | MR | Zbl

[12] S. Gala, M.A. Ragusa, “On the regularity criterion for the Navier-Stokes equations in terms of one directional derivative”, Asian-Eur. J. Math., 10:1 (2017), 1750012 | DOI | MR | Zbl

[13] S. Gala, M.A. Ragusa, “A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 26 | DOI | MR | Zbl

[14] Y. Giga, “Solutions for semilinear parabolic equations in $L^{p} $ and regularity of weak solutions of the Navier-Stokes system”, J. Diff. Equations, 61 (1986), 186–212 | DOI | MR | Zbl

[15] H. Kozono, T. Ogawa, Y. Taniuchi, “The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations”, Math. Z., 242:2 (2002), 251–278 | DOI | MR | Zbl

[16] I. Kukavica, M. Ziane, “One component regularity for the Navier-Stokes equations”, Nonlinearity, 19:2 (2006), 453–460 | DOI | MR | Zbl

[17] I. Kukavica, M. Ziane, “Navier-Stokes equations with regularity in one direction”, J. Math. Phys., 48:6 (2007), 065203 | DOI | MR | Zbl

[18] P.G. Lemarié-Rieusset, “The Navier-Stokes equations in the critical Morrey-Campanato space”, Rev. Mat. Iberoam., 23:3 (2007), 897–930 | DOI | MR | Zbl

[19] J. Leray, “On the movement of a space-filling viscous liquid”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[20] T. Ohyama, “Interior regularity of weak solutions of the time-dependent Navier-Stokes equation”, Proc. Japan Acad., 36 (1960), 273–277 | MR | Zbl

[21] P. Penel, M. Pokorný, “Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity”, Appl. Math., Praha, 49:5 (2004), 483–493 | DOI | MR | Zbl

[22] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equations”, Arch. Ration. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl

[23] J. Serrin, “The initial value problem for the Navier-Stokes equations”, Nonlinear Probl. Proc. Symp. Madison, 1962, no. 1963, 69–98 | MR | Zbl

[24] Z. Skalák, “A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component”, J. Math. Phys., 55:12 (2014), 121506 | DOI | MR | Zbl

[25] H. Sohr, W. von Wahl, “On the regularity of the pressure of weak solutions of Navier-Stokes equations”, Arch. Math., 46 (1986), 428–439 | DOI | MR | Zbl

[26] M. Struwe, “On partial regularity results for the Navier-Stokes equations”, Commun. Pure Appl. Math., 41:4 (1988), 437–458 | DOI | MR | Zbl

[27] Z.F. Zhang, Q.L. Chen, “Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $ \mathbb{R ^{3}}$”, J. Differ. Equations, 216:2 (2005), 470–481 | DOI | MR | Zbl

[28] Z.J. Zhang, “Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component”, Czech. Math. J., 68:1 (2018), 219–225 | DOI | MR | Zbl

[29] Z.J. Zhang, “An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component”, Z. Angew. Math. Phys., 66:4 (2015), 1707–1715 | DOI | MR | Zbl

[30] Z. Zhang, Z.-a. Yao, M. Lu, L. Ni, “Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations”, J. Math. Phys., 52:5 (2011), 053103 | DOI | MR | Zbl

[31] Y. Zhou, “A new regularity criterion for weak solutions to the Navier-Stokes equations”, J. Math. Pures Appl., IX. Sér., 84:11 (2005), 1496–1514 | DOI | MR | Zbl

[32] Y. Zhou, “A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component”, Methods Appl. Anal., 9:4 (2002), 563–578 | DOI | MR | Zbl

[33] Y. Zhou, M. Pokorný, “On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component”, J. Math. Phys., 50:12 (2009), 123514 | DOI | MR | Zbl

[34] Y. Zhou, M. Pokorný, “On the regularity of the solutions of the Navier-Stokes equations via one velocity component”, Nonlinearity, 23:5 (2010), 1097–1107 | DOI | MR | Zbl