Optimal control of thin elastic inclusion in an elastic body
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 187-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the inverse problem of the location of a thin elastic inclusion in an elastic body. A thin inclusion is considered to be soldered. The body is fixed on one part of the outer border, while external surface forces act on the other part. The inverse problem of identification of the inclusion is considered as the problem of minimizing the target functional. The existence of a solution to the inverse problem is proved. The first variations of the solution of the direct problem with respect to the shape of the domain and the derivative of the functional with respect to the shape are calculated. A numerical algorithm for solving this problem is proposed and numerical results are presented.
Keywords: optimal control, shape sensitivity analysis, thin elastic inclusion.
@article{SEMR_2022_19_1_a21,
     author = {V. M. Karnaev},
     title = {Optimal control of thin elastic inclusion in an elastic body},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {187--210},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/}
}
TY  - JOUR
AU  - V. M. Karnaev
TI  - Optimal control of thin elastic inclusion in an elastic body
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 187
EP  - 210
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/
LA  - ru
ID  - SEMR_2022_19_1_a21
ER  - 
%0 Journal Article
%A V. M. Karnaev
%T Optimal control of thin elastic inclusion in an elastic body
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 187-210
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/
%G ru
%F SEMR_2022_19_1_a21
V. M. Karnaev. Optimal control of thin elastic inclusion in an elastic body. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 187-210. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/

[1] Hoshino Tetsuya, et al, “Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability”, Am. J. Physiol. Heart Circ. Physiol., 297:2 (2009), H802–H810 | DOI

[2] A. Khludnev, G.R. Leugering, “Delaminated thin elastic inclusions inside elastic bodies”, Math. Mech. Complex Syst., 2:1 (2014), 1–21 | DOI | MR | Zbl

[3] A. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[4] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[5] V. Shcherbakov, “Optimal control of the rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sci., 203:4 (2014), 591–604 | DOI | MR | Zbl

[6] V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl

[7] A.A. Novotny, R. Feijóo, E. Taroco, C. Padra, “Topological sensitivity analysis”, Comput. Methods Appl. Mech. Eng., 192:7-8 (2003), 803–829 | DOI | MR | Zbl

[8] S. Amstutz, A.A. Novotny, “Topological optimization of structures subject to von Mises stress constraints”, Struct. Multidiscip. Optim., 41:3 (2010), 407–420 | DOI | MR | Zbl

[9] V.A. Kovtunenko, “Sensitivity of cracks in 2D-Lamé problem via material derivatives”, Z. Angew. Math. Phys., 52:6 (2001), 1071–1087 | DOI | MR | Zbl

[10] N.P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, ZAMM, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl

[11] P.I. Plotnikov, E.M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84:2 (2011), 681–684 | DOI | MR | Zbl

[12] E.M. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl

[13] E. Taroco, “Shape sensitivity analysis in linear elastic fracture mechanics”, Comput. Methods Appl. Mech. Eng., 188:4 (2000), 697–712 | DOI | MR | Zbl

[14] J. Sokolowski, A. Zochowski, “Topological derivative in shape optimization”, Encyclopedia of Optimization, 2009, 3908–3918

[15] J. Sokolowski, Jean-Paul Zolesio, Introduction to shape optimization: shape sensitivity analysis, Springer Series in Computational Mathematics, 16, Springer, Berlin etc., 1992 | DOI | MR | Zbl

[16] A.A. Novotny, J. Sokolowski, Topological derivatives in shape optimization, Springer, Berlin, 2013 | MR | Zbl