Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a21, author = {V. M. Karnaev}, title = {Optimal control of thin elastic inclusion in an elastic body}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {187--210}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/} }
V. M. Karnaev. Optimal control of thin elastic inclusion in an elastic body. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 187-210. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a21/
[1] Hoshino Tetsuya, et al, “Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability”, Am. J. Physiol. Heart Circ. Physiol., 297:2 (2009), H802–H810 | DOI
[2] A. Khludnev, G.R. Leugering, “Delaminated thin elastic inclusions inside elastic bodies”, Math. Mech. Complex Syst., 2:1 (2014), 1–21 | DOI | MR | Zbl
[3] A. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[4] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Methods Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl
[5] V. Shcherbakov, “Optimal control of the rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sci., 203:4 (2014), 591–604 | DOI | MR | Zbl
[6] V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7:3 (2013), 435–443 | DOI | MR | Zbl
[7] A.A. Novotny, R. Feijóo, E. Taroco, C. Padra, “Topological sensitivity analysis”, Comput. Methods Appl. Mech. Eng., 192:7-8 (2003), 803–829 | DOI | MR | Zbl
[8] S. Amstutz, A.A. Novotny, “Topological optimization of structures subject to von Mises stress constraints”, Struct. Multidiscip. Optim., 41:3 (2010), 407–420 | DOI | MR | Zbl
[9] V.A. Kovtunenko, “Sensitivity of cracks in 2D-Lamé problem via material derivatives”, Z. Angew. Math. Phys., 52:6 (2001), 1071–1087 | DOI | MR | Zbl
[10] N.P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, ZAMM, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl
[11] P.I. Plotnikov, E.M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84:2 (2011), 681–684 | DOI | MR | Zbl
[12] E.M. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl
[13] E. Taroco, “Shape sensitivity analysis in linear elastic fracture mechanics”, Comput. Methods Appl. Mech. Eng., 188:4 (2000), 697–712 | DOI | MR | Zbl
[14] J. Sokolowski, A. Zochowski, “Topological derivative in shape optimization”, Encyclopedia of Optimization, 2009, 3908–3918
[15] J. Sokolowski, Jean-Paul Zolesio, Introduction to shape optimization: shape sensitivity analysis, Springer Series in Computational Mathematics, 16, Springer, Berlin etc., 1992 | DOI | MR | Zbl
[16] A.A. Novotny, J. Sokolowski, Topological derivatives in shape optimization, Springer, Berlin, 2013 | MR | Zbl