Uniform $m$-equivalences and numberings of classical systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 49-65

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the representability of algebraic structures (groups, lattices, semigroups, etc.) over equivalence relations on natural numbers. The concept of a (uniform) $m$-equivalence is studied. It is proved that the numbering equivalence of any numbered group is a uniform $m$-equivalence. On the other hand, we construct an example of a uniform $m$-equivalence over which no group is representable. Additionally we show that there exists a positive equivalence over which no upper (lower) semilattice is representable.
Keywords: uniform $m$-equivalence, lattice, field.
Mots-clés : group
@article{SEMR_2022_19_1_a2,
     author = {N. Kh. Kasymov and R. N. Dadazhanov and S. K. Zhavliev},
     title = {Uniform $m$-equivalences and numberings of classical systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {49--65},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
AU  - R. N. Dadazhanov
AU  - S. K. Zhavliev
TI  - Uniform $m$-equivalences and numberings of classical systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 49
EP  - 65
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/
LA  - en
ID  - SEMR_2022_19_1_a2
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%A R. N. Dadazhanov
%A S. K. Zhavliev
%T Uniform $m$-equivalences and numberings of classical systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 49-65
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/
%G en
%F SEMR_2022_19_1_a2
N. Kh. Kasymov; R. N. Dadazhanov; S. K. Zhavliev. Uniform $m$-equivalences and numberings of classical systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 49-65. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/