Uniform $m$-equivalences and numberings of classical systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 49-65
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers the representability of algebraic structures (groups, lattices, semigroups, etc.) over equivalence relations on natural numbers. The concept of a (uniform) $m$-equivalence is studied. It is proved that the numbering equivalence of any numbered group is a uniform $m$-equivalence. On the other hand, we construct an example of a uniform $m$-equivalence over which no group is representable. Additionally we show that there exists a positive equivalence over which no upper (lower) semilattice is representable.
Keywords:
uniform $m$-equivalence, lattice, field.
Mots-clés : group
Mots-clés : group
@article{SEMR_2022_19_1_a2,
author = {N. Kh. Kasymov and R. N. Dadazhanov and S. K. Zhavliev},
title = {Uniform $m$-equivalences and numberings of classical systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {49--65},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/}
}
TY - JOUR AU - N. Kh. Kasymov AU - R. N. Dadazhanov AU - S. K. Zhavliev TI - Uniform $m$-equivalences and numberings of classical systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 49 EP - 65 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/ LA - en ID - SEMR_2022_19_1_a2 ER -
%0 Journal Article %A N. Kh. Kasymov %A R. N. Dadazhanov %A S. K. Zhavliev %T Uniform $m$-equivalences and numberings of classical systems %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 49-65 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/ %G en %F SEMR_2022_19_1_a2
N. Kh. Kasymov; R. N. Dadazhanov; S. K. Zhavliev. Uniform $m$-equivalences and numberings of classical systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 49-65. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a2/