Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a19, author = {N. N. Tokareva}, title = {A quadratic part of a bent function can be any}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {342--347}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a19/} }
N. N. Tokareva. A quadratic part of a bent function can be any. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 342-347. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a19/
[1] C. Charnes, U. Dempwolff, J. Pieprzyk, “The eight variable homogeneous degree three bent functions”, J. Discrete Algorithms, 6:1 (2008), 66–72 | DOI | MR | Zbl
[2] C. Charnes, M. Rötteler, T. Beth, “Homogeneous bent functions, invariants, and designs”, Des. Codes Cryptography, 26:1-3 (2002), 139–154 | DOI | MR | Zbl
[3] T. Cusick, P. Stănică, Cryptographic Boolean functions and applications, Elsevier, Amsterdam, 2009 | MR | Zbl
[4] M. Matsui, “Linear cryptanalysis method for DES cipher”, Advances in cryptology - EUROCRYPT '93, Lect. Notes Comput. Sci., 765, ed. Helleseth T., 1994, 386–397 | DOI | MR | Zbl
[5] P. Langevin, G. Leander, “Counting all bent functions in dimension eight 99270589265934370305785861242880”, Des. Codes Cryptography, 59:1-3 (2011), 193–205 | DOI | MR | Zbl
[6] List of all $156$ nonisomorphic graphs on $6$ vertices, https://users.cecs.anu.edu.au/b̃dm/data/graphs.html
[7] O. Rothaus, “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[8] N. Tokareva, Bent functions. Results and applications to cryptography, Elsevier, Amsterdam, 2015 | MR | Zbl
[9] N.N. Tokareva, “Duality between bent functions and affine functions”, Discrete Math., 312:3 (2012), 666–670 | DOI | MR | Zbl
[10] N.N. Tokareva, “On decomposition of a Boolean function into sum of bent functions”, Sib. Èlectron. Math. Izv., 11 (2014), 745–751 | MR | Zbl
[11] N.N. Tokareva, “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl
[12] N.N. Tokareva, “The group of automorphisms of the set of bent functions”, Discrete Math. Appl., 20:5-6 (2010), 655–664 | DOI | MR | Zbl
[13] L. Qu, S. Fu, Q. Dai, C. Li, When a Boolean function can be expressed as the sum of two bent functions, Cryptology, Report 2014/048, , 2014 http://eprint.iacr.org/2014/048
[14] C. Qu, J. Seberry, J. Pieprzyk, “Homogeneous bent functions”, Discrete Appl. Math., 102:1-2 (2000), 133–139 | DOI | MR | Zbl