On detecting alternatives by one-parametric recursive residuals
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 292-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear regression model with one unknown parameter which is estimated by the least squares method. We suppose that, in reality, the given observations satisfy a close alternative to the linear regression model. We investigate the limiting behaviour of the normalized process of sums of recursive residuals. Such residuals were introduced by Brown, Durbin and Evans (1975) and their sums are a convenient tool for detecting discrepancy between observations and the studied model. In particular, under less restrictive assumptions we generalize a key result from Bischoff (2016).
Keywords: linear regression, recursive residuals, weak convergence, Wiener process, close alternative.
@article{SEMR_2022_19_1_a18,
     author = {A. I. Sakhanenko},
     title = {On detecting alternatives by one-parametric recursive residuals},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {292--308},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a18/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On detecting alternatives by one-parametric recursive residuals
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 292
EP  - 308
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a18/
LA  - en
ID  - SEMR_2022_19_1_a18
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On detecting alternatives by one-parametric recursive residuals
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 292-308
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a18/
%G en
%F SEMR_2022_19_1_a18
A. I. Sakhanenko. On detecting alternatives by one-parametric recursive residuals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 292-308. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a18/

[1] P. Billingsley, Convergence of probability measures, Wiley, Chichester, 1999 | MR | Zbl

[2] W. Bischoff, “A functional central limit theorem for regression models”, Ann. Stat., 26:4 (1998), 1398–1410 | DOI | MR | Zbl

[3] W. Bischoff, “On Designs for recursive least squares residuals to detect alternatives”, mODa 11 - Advances in Model-Oriented Design and Analysis, Proceedings of the 11th International Workshop in Model-Oriented Design and Analysis (Hamminkeln, Germany, June 12-17, 2016), eds. J. Kunert et al., Springer, Cham, 2016, 37–45 | DOI

[4] R.L. Brown, J. Durbin, J.M. Evans, “Techniques for testing the constancy of regression relationships over time”, J. R. Stat. Soc. Ser. B, 37:2 (1975), 149–192 | MR | Zbl

[5] M.D. Donsker, “An invariance principle for certain probability limit theorems”, Mem. Am. Math. Soc., 6, no. 6, 1951, 885–900 | MR | Zbl

[6] I.B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1978), 695–698 | DOI | MR | Zbl

[7] P.K. Sen, “Invariance principles for recursive residuals”, Ann. Stat., 10:1 (1982), 307–312 | DOI | MR | Zbl

[8] Yu.V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Teor. Veroyatn. Primen., 1:2 (1956), 177–238 | MR | Zbl

[9] A.V. Skorohod, “On a representation of random variables”, Theory Probab. Appl., 21 (1977), 628–632 | DOI | MR | Zbl

[10] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Stat., 36:2 (1965), 423–439 | DOI | MR | Zbl