Exponential tightness for integral -- type functionals of centered independent differently distributed random variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 273-284

Voir la notice de l'article provenant de la source Math-Net.Ru

Exponential tightness is proved for a sequence of integral – type random fields constructed by centered independent differently distributed random variables. This result is proven using sufficient conditions for the exponential tightness of a sequence of continuous random fields of arbitrary form, which are also obtained in this paper.
Keywords: random field, large deviations principle, moderate deviations principle, exponential tightness.
Mots-clés : Cramer's moment condition
@article{SEMR_2022_19_1_a17,
     author = {A. V. Logachov and A. A. Mogulskii},
     title = {Exponential tightness for integral -- type functionals of centered independent differently distributed random variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - A. A. Mogulskii
TI  - Exponential tightness for integral -- type functionals of centered independent differently distributed random variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 273
EP  - 284
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/
LA  - en
ID  - SEMR_2022_19_1_a17
ER  - 
%0 Journal Article
%A A. V. Logachov
%A A. A. Mogulskii
%T Exponential tightness for integral -- type functionals of centered independent differently distributed random variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 273-284
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/
%G en
%F SEMR_2022_19_1_a17
A. V. Logachov; A. A. Mogulskii. Exponential tightness for integral -- type functionals of centered independent differently distributed random variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 273-284. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/