Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a17, author = {A. V. Logachov and A. A. Mogulskii}, title = {Exponential tightness for integral -- type functionals of centered independent differently distributed random variables}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {273--284}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/} }
TY - JOUR AU - A. V. Logachov AU - A. A. Mogulskii TI - Exponential tightness for integral -- type functionals of centered independent differently distributed random variables JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2022 SP - 273 EP - 284 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/ LA - en ID - SEMR_2022_19_1_a17 ER -
%0 Journal Article %A A. V. Logachov %A A. A. Mogulskii %T Exponential tightness for integral -- type functionals of centered independent differently distributed random variables %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2022 %P 273-284 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/ %G en %F SEMR_2022_19_1_a17
A. V. Logachov; A. A. Mogulskii. Exponential tightness for integral -- type functionals of centered independent differently distributed random variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 273-284. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a17/
[1] A.A. Pukhal'skij, “On the theory of large deviations”, Theory probab. Appl., 38:3 (1993), 490–497 | DOI | MR | Zbl
[2] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Applications of Mathematics, 38, Springer, New York, 1998 | MR | Zbl
[3] A.V. Logachov, A.A. Mogul'skii, “Exponential Chebyshev inequalities for random graphons and their applications”, Sib. Math. J., 61:4 (2020), 697–714 | DOI | MR | Zbl
[4] S. Chatterjee, Large deviations for random graphs, Lecture Notes in Mathematics, 2197, Springer, Cham, 2017 | DOI | MR | Zbl
[5] J.L. Kelley, General topology, Graduate Texts in Mathematics, 27, Springer, New York, etc., 1975 | MR | Zbl
[6] A.A. Pukhal'skij, “On functional principle of large deviations”, New trends in probability and statistics, Proc. 23rd Bakuriani Colloq. in Honour of Yu. V. Prokhorov (Bakuriani/USSR 1990), v. 1, eds. V.V. Sazonov, T. L. Shervashidze, De Gruyter, Berlin–Boston, 1991, 198–219 | MR | Zbl
[7] J. Feng, T. Kurtz, Large deviations for stochastic processes, Mathematical Surveys and Monographs, 131, AMS, Providence, 2006 | DOI | MR | Zbl
[8] E. Ostrovsky, L. Sirota, Sufficient conditions for exponential tightness of normed sums of independent random fields in the space of continuous function, 2014, arXiv: 1403.7562