Stability and instability of a random multiple access system with an energy harvesting mechanism
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a generalisation of the model of the classical synchronised multiple access system with a single transmission channel controlled by a randomised transmission protocol (ALOHA) and additionally equipped with an energy harvesting mechanism. The generalisation is the assumption that messages may receive an unlimited amount of energy.
Mots-clés : Markov chains
Keywords: ALOHA algorithm, generalised Foster criterion, ergodicity, transience.
@article{SEMR_2022_19_1_a16,
     author = {A. V. Rezler and M. G. Chebunin},
     title = {Stability and instability of a random multiple access system with an energy harvesting mechanism},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a16/}
}
TY  - JOUR
AU  - A. V. Rezler
AU  - M. G. Chebunin
TI  - Stability and instability of a random multiple access system with an energy harvesting mechanism
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 1
EP  - 17
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a16/
LA  - ru
ID  - SEMR_2022_19_1_a16
ER  - 
%0 Journal Article
%A A. V. Rezler
%A M. G. Chebunin
%T Stability and instability of a random multiple access system with an energy harvesting mechanism
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 1-17
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a16/
%G ru
%F SEMR_2022_19_1_a16
A. V. Rezler; M. G. Chebunin. Stability and instability of a random multiple access system with an energy harvesting mechanism. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a16/

[1] S. Foss, D. Kim, A. Turlikov, “Stability and instability of a random multiple access model with adaptive energy harvesting”, Sib. Èlektron. Mat. Izv., 13 (2016), 16–25 | MR | Zbl

[2] Xun Zhou, Rui Zhang, Chin Keong Ho, “Wireless information and power transfer in multiuser OFDM systems”, IEEE Transactions on Wireless Communications, 13:4 (2014), 2282–2294 | DOI

[3] J. Jeon, A. Ephremides, “The stability region of random multiple access under stochastic energy harvesting”, Proceedings of the IEEE International Symposium on Information Theory, ISIT, 2011, 1796–1800

[4] A. Bergman, M. Sidi, “Energy efficiency of collision resolution protocols”, Computer Communications, 29 (2006), 3397–3415 | DOI | MR

[5] N. Abramson, “Development of the ALOHANET”, IEEE Trans. Inf. Theory, 31 (1985), 119–123 | DOI | Zbl

[6] G. Fayolle, E. Gelenbe, J. Labetoulle, “Stability and optimal control of the packet switching broadcast channel”, J. Assoc. Comput. Mach., 24:3 (1977), 375–386 | DOI | MR | Zbl

[7] F.P. Kelly, I.M. McPhee, “The number of packets transmitted by collision detect random access schemes”, Ann. Probab., 15:4 (1987), 1557–1568 | DOI | MR | Zbl

[8] N. Vvedenskaya, Yu. Suhov, “Multi-access system with many users: Stability and metastability”, Probl. Inf. Transm., 43:3 (2007), 263–269 | DOI | MR | Zbl

[9] D. Kim, A. Turlikov, S. Foss, “Random multiple access with common energy harvesting mechanism”, Sib. Èlektron. Mat. Izv., 11 (2014), 896–905 | MR | Zbl

[10] S.G. Foss, D.E. Denisov, “On transience conditions for Markov chains”, Sib. Math. J., 42:2 (2001), 364–371 | DOI | MR | Zbl

[11] S. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, J. Oper. Res. Soc. Japan, 47:4 (2004), 275–303 | MR | Zbl

[12] D. Denisov, Markov chains and random walks with heavy-tailed increments, PhD thesis, Heriot-Watt University, Edinburgh, 2004