Lambek invariants in a~p-semi-abelian category
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 332-341
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the well-known invariants $\mathrm{Ker}$ and $\mathrm{Img}$ for commutative squares in P-semi-abelian categories. These invariants were introduced by Lambek for groups and then studied in a more general context by Hilton and Nomura. In this paper, P-semi-abelian analogs are proved for Lambek's isomorphism and acyclic sequences that include these invariants are found.
Keywords:
P-semi-abelian category, commutative square
Mots-clés : Lambek invariants.
Mots-clés : Lambek invariants.
@article{SEMR_2022_19_1_a13,
author = {Ya. A. Kopylov},
title = {Lambek invariants in a~p-semi-abelian category},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {332--341},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/}
}
Ya. A. Kopylov. Lambek invariants in a~p-semi-abelian category. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 332-341. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/