Lambek invariants in a~p-semi-abelian category
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 332-341

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the well-known invariants $\mathrm{Ker}$ and $\mathrm{Img}$ for commutative squares in P-semi-abelian categories. These invariants were introduced by Lambek for groups and then studied in a more general context by Hilton and Nomura. In this paper, P-semi-abelian analogs are proved for Lambek's isomorphism and acyclic sequences that include these invariants are found.
Keywords: P-semi-abelian category, commutative square
Mots-clés : Lambek invariants.
@article{SEMR_2022_19_1_a13,
     author = {Ya. A. Kopylov},
     title = {Lambek invariants in a~p-semi-abelian category},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {332--341},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/}
}
TY  - JOUR
AU  - Ya. A. Kopylov
TI  - Lambek invariants in a~p-semi-abelian category
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 332
EP  - 341
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/
LA  - en
ID  - SEMR_2022_19_1_a13
ER  - 
%0 Journal Article
%A Ya. A. Kopylov
%T Lambek invariants in a~p-semi-abelian category
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 332-341
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/
%G en
%F SEMR_2022_19_1_a13
Ya. A. Kopylov. Lambek invariants in a~p-semi-abelian category. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 332-341. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a13/