Description of modal logics which enjoy co-cover property
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 316-325

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we use admissible rules to determine whenever modal logic satisfies weak co-cover property. We prove that logic $\lambda$ over $S4$ satisfies such property iff the given set of rules are admissible in $\lambda$.
Keywords: modal logic, inference rule, Kripke frame and model
Mots-clés : admissible rule.
@article{SEMR_2022_19_1_a12,
     author = {V. V. Rimatskiy},
     title = {Description of modal logics which enjoy co-cover property},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {316--325},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/}
}
TY  - JOUR
AU  - V. V. Rimatskiy
TI  - Description of modal logics which enjoy co-cover property
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 316
EP  - 325
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/
LA  - en
ID  - SEMR_2022_19_1_a12
ER  - 
%0 Journal Article
%A V. V. Rimatskiy
%T Description of modal logics which enjoy co-cover property
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 316-325
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/
%G en
%F SEMR_2022_19_1_a12
V. V. Rimatskiy. Description of modal logics which enjoy co-cover property. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 316-325. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/