Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2022_19_1_a12, author = {V. V. Rimatskiy}, title = {Description of modal logics which enjoy co-cover property}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {316--325}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/} }
V. V. Rimatskiy. Description of modal logics which enjoy co-cover property. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 316-325. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a12/
[1] V.V. Rybakov, Admissibility of logical inference rules, Studies in Logic and the Foundations of Mathematics, 136, Elsevier, Amsterdam, 1997 | MR | Zbl
[2] R. Harrop, “Concerning formulas of the types $A \to B \vee C, A \to (\exists x) B(x)$ in intuitionistic formal systems”, J. Symb. Log., 25:1 (1960), 27–32 | DOI | MR | Zbl
[3] G.E. Mints, “Derivability of admissible rules”, J. Sov. Math., 6:4 (1976), 417–421 | DOI | Zbl
[4] J. Porte, “The deducibilities of S5”, J. Phylos. Logic, 10:1 (1981), 409–422 | DOI | MR | Zbl
[5] P. Lorenzen, Einfüng in die operative Logik und Mathematik, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR | Zbl
[6] H. Friedman, “One hundred and two problems in mathematical logic”, J. Symb. Log., 40:3 (1975), 113–130 | DOI | MR | Zbl
[7] V.V. Rybakov, “A criterion for admissibility of rules in the modal system S4 and intuitionistic logic”, Algebra Logic, 23:5 (1984), 369–384 | DOI | MR | Zbl
[8] R. Iemhoff, “A(nother) characterization of intuitionistic propositional logic”, Ann. Pure Appl. Logic, 113:1-3 (2002), 161–173 | DOI | MR | Zbl
[9] V.V. Rybakov, “An explicit basis for rules admissible in modal system S4”, Bull. Sect. Log., Univ. Łódź, Dep. Log., 28:3 (1999), 135–143 | MR | Zbl