On algebraic isomorphisms of cohomology of a compactification of the N\'eron model with multiplications from an imaginary quadratic field
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Grothendieck standard conjecture of Lefschetz type holds for rational cohomology of degrees 2, 3 of a Künnemann compactification of the Néron minimal model of an absolutely simple principally polarized Abelian variety of non-exceptional dimension divisible by 4 over the field of rational functions of a smooth projective curve provided that the ring of endomorphisms of the generic geometric fibre is an order of an imaginary quadratic field.
Keywords: Abelian variety, Néron minimal model, Künnemann compactification, Grothendieck standard conjecture of Lefschetz type.
@article{SEMR_2022_19_1_a1,
     author = {O. V. Makarova},
     title = {On algebraic isomorphisms of cohomology of a compactification of the {N\'eron} model with multiplications from an imaginary quadratic field},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a1/}
}
TY  - JOUR
AU  - O. V. Makarova
TI  - On algebraic isomorphisms of cohomology of a compactification of the N\'eron model with multiplications from an imaginary quadratic field
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2022
SP  - 34
EP  - 48
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a1/
LA  - en
ID  - SEMR_2022_19_1_a1
ER  - 
%0 Journal Article
%A O. V. Makarova
%T On algebraic isomorphisms of cohomology of a compactification of the N\'eron model with multiplications from an imaginary quadratic field
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2022
%P 34-48
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a1/
%G en
%F SEMR_2022_19_1_a1
O. V. Makarova. On algebraic isomorphisms of cohomology of a compactification of the N\'eron model with multiplications from an imaginary quadratic field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 19 (2022) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/SEMR_2022_19_1_a1/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebr. Geom., Bombay Colloq., 1968, 193–199 | MR | Zbl

[2] S.L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix Exposés Cohomologie Schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl

[3] S.G. Tankeev, “On the standard conjecture for complex abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | MR | Zbl

[4] S.G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI | MR | Zbl

[5] S.G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl

[6] D. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Am. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[7] S.G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl

[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[9] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[10] O.V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$-surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | MR | Zbl

[11] O.V. Nikol'skaya, “On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Modeling and analysis of information systems, 23:4 (2016), 440–465 | DOI | MR

[12] S.G. Tankeev, “On the standard conjecture and the existence of the Chow-Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | MR | Zbl

[13] S.G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285 | DOI | MR | Zbl

[14] F. Charles, “Remarks on the Lefschetz standard conjecture and hyperkähler varieties”, Comment. Math. Helv., 88:2 (2013), 449–468 | DOI | MR | Zbl

[15] S.G. Tankeev, “On algebraic isomorphisms of rational cohomology of a Künnemann compactification of the Néron minimal model”, Sib. Èlektron. Mat. Izv., 17 (2020), 89–125 | DOI | MR | Zbl

[16] S.G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Math., 83:3 (2019), 613–653 | DOI | MR | Zbl

[17] S.G. Tankeev, “On the standard conjecture for a 3-dimensional variety fibred by curves with a non-injective Kodaira-Spencer map”, Izv. Math., 84:5 (2020), 1016–1035 | DOI | MR | Zbl

[18] A. Grothendieck, “Modèles de Néron et monodromie”, Sémin. Géom. Algébrique, SGA 7 I, Exp. 9 (Bois-Marie 1967–1969), Lect. Notes Math., 288, Springer-Verlag, Berlin etc., 1972, 313–523 | DOI | Zbl

[19] K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. Éc. Norm. Supér., (4), 34:4 (2001), 503–523 | DOI | MR | Zbl

[20] K. Künnemann, “Projective regular models for abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl

[21] B. Moonen, Yu. Zarhin, “Weil classes on abelian varieties”, J. Reine Angew. Math., 496 (1998), 83–92 | DOI | MR | Zbl

[22] P. Deligne, “Théorie de Hodge. II”, Publ. Math., Inst. Hautes Étud. Sci., 40:1 (1971), 5–57 | DOI | MR | Zbl

[23] Yu.G. Zarhin, “Weights of simple Lie algebras in cohomology of algebraic varieties”, Math. USSR, Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[24] P. Deligne, “Théorie de Hodge. III”, Publ. Math., Inst. Hautes Étud. Sci., 44 (1974), 5–77 | DOI | MR | Zbl

[25] B.B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”: J.D.Lewis, A survey of the Hodge conjecture, With an appendix by B. Brent Gordon, CRM Monograph Series, 10, AMS, Providence, 1999, 297–356 | MR | Zbl

[26] M.V. Borovoi, “The Hodge group and the algebra of endomorphisms of an abelian variety”, Vopr. Teor. Grupp Gomologicheskoj Algebry, Yaroslavl, 1981, 124–128 | MR | Zbl

[27] P. Deligne, “Variétés de Shimura$:$ Interprétation modulaires, et techniques de construction de modeles canoniques”, Proc. Symp. Pure Math., 33:2 (1979), 247–290 | DOI | MR | Zbl

[28] N. Bourbaki, “Groupes et algèbres de Lie, Chaps. 1–8”, Actualités Sci. Indust., 1285, Hermann, Paris, 1971 ; 1349, 1972 ; 1337, 1968 ; 1364, 1975 | MR | Zbl | Zbl | Zbl | Zbl

[29] S.G. Tankeev, “Cycles on abelian varieties and exceptional numbers”, Izv. Math., 60:2 (1996), 391–424 | DOI | MR | Zbl

[30] C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer-Verlag, Berlin, 1992 | MR | Zbl

[31] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. Math. (2), 109 (1979), 415–476 | DOI | MR | Zbl

[32] C.H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[33] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | Zbl

[34] J.S. Milne, Étale cohomology, Princeton Univ. Press, Princeton, 1980 | MR | Zbl

[35] C. Voisin, Hodge theory and complex algebraic geometry, v. I, Société Mathématique de France, Paris, 2002 ; v. II, Cambridge University Press, Cambridge, 2003 | MR | Zbl | MR | Zbl

[36] N. Bourbaki, Éléments de mathématique, Algèbre. Ch. X: Algèbre homologique, Masson, Paris etc, 1980 | MR | Zbl

[37] G. Bredon, Sheaf theory, McGraw-Hill, New York etc, 1967 | MR | Zbl