Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a77, author = {M. V. Tryamkin}, title = {The length and area principle for a function on an abstract surface over a domain of a {Carnot} group}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1720--1734}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/} }
TY - JOUR AU - M. V. Tryamkin TI - The length and area principle for a function on an abstract surface over a domain of a Carnot group JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1720 EP - 1734 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/ LA - ru ID - SEMR_2021_18_2_a77 ER -
%0 Journal Article %A M. V. Tryamkin %T The length and area principle for a function on an abstract surface over a domain of a Carnot group %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1720-1734 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/ %G ru %F SEMR_2021_18_2_a77
M. V. Tryamkin. The length and area principle for a function on an abstract surface over a domain of a Carnot group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1720-1734. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/
[1] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, with an appendix by M. Schiffer, Springer-Verlag, New York-Heidelberg, 1977 (Reprint of the 1950 original) | MR
[2] J. Jost, Riemannian geometry and geometric analysis, Universitext, Seventh edition, Springer, Cham, 2017 | DOI | MR | Zbl
[3] G.D. Suvorov, Obobschennyi «printsip dliny i ploschadi» v teorii otobrazhenii [ The generalized “length and area principle” in mapping theory], “Naukova Dumka”, Kiev, 1985 (Russian) | MR
[4] V.M. Miklyukov, Geometricheskii analiz. Differentsialnye formy, pochti-resheniya, pochti kvazikonformnye otobrazheniya [Geometric Analysis. Differential Forms, Almost-solutions, Almost Quasiconformal Mappings], Volgograd Gos. Univ., Volgograd, 2007 (Russian)
[5] V.M. Miklyukov, Conformal Maps of Nonsmooth Surfaces and Their Applications, Xlibris Corporation, Philadelphia, 2008
[6] V.M. Miklyukov, Vvedenie v negladkii analiz [Introduction to Nonsmooth Analysis], Volgograd. Gos. Univ., Volgograd, 2008 (Russian)
[7] V.M. Miklyukov, Funktsii vesovykh klassov Soboleva, anizotropnye metriki i vyrozhdayuschiesya kvazikonformnye otobrazheniya [Functions of Sobolev Weight Classes, Anisotropic Metrics, and Degenerating Quasiconformal Mappings], Volgograd Gos. Univ., Volgograd, 2010 (Russian)
[8] O. Martio, V.M. Miklyukov, M. Vuorinen, “Harnack's inequality for p-harmonic functions on Riemannian manifolds for different exhaustions”, Complex analysis in modern mathematics, FAZIS, M., 2001, 201–230 | MR | Zbl
[9] M.V. Tryamkin, “An Estimate of the Modulus of a Family of Curves on an Abstract Surface over a Cylinder”, Math. Notes, 107:1 (2020), 177–181 | DOI | MR | Zbl
[10] M.V. Tryamkin, “Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring”, Math. Notes, 108:2 (2020), 297–301 | DOI | MR | Zbl
[11] M.V. Tryamkin, “The modulus of a family of curves on an abstract surface over a spherical ring”, Sib. Èlektron. Mat. Izv., 17 (2020), 1816–1822 | DOI | MR | Zbl
[12] M.V. Tryamkin, “The Symmetry Principle and Nondegenerate Families of Curves on Abstract Surfaces”, Siberian Math. Journal, 62:6 (2021), 1140–1151 | DOI | MR | Zbl
[13] G.B. Folland, I.M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[14] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 119 (1989), 1–60 | DOI | MR
[15] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin Heidelberg, 2007 | MR | Zbl
[16] N. Bourbaki, Integration, Chapters 7–9, v. II, Springer-Verlag, Berlin, 2004 | MR
[17] P.K. Rashevsky, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei [Any two points of a totally nonholonomic space can be connected by an admissible curve]”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94 (Russian)
[18] W.L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR
[19] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl
[20] S.K. Vodop'yanov, N.A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings”, Sib. Math. J., 55:5 (2014), 817–848 | DOI | MR | Zbl
[21] T. Kilpeläinen, “Weighted Sobolev spaces and capacity”, Ann. Acad. Sc. Fen. Ser A. I. Math., 19 (1994), 95–113 | MR | Zbl
[22] J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Second edition, Springer, New York, 2013 | MR | Zbl
[23] J. Heinonen, “Calculus on Carnot groups”, Fall School in Analysis (Jyväskylä, 1994), Univ. Jyväskylä, Jyväskylä, 1995, Report 68, 1–31 | MR | Zbl
[24] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl