The length and area principle for a function on an abstract surface over a domain of a Carnot group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1720-1734.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a domain of a Carnot group, we say that an abstract surface is defined over this domain if the volume element is induced by some weight function, while the usual vector norm in the horizontal vector bundle is replaced by a more general analog of this norm. Suppose that a continuous function $f$ from a weighted Sobolev space and a smooth function $\varphi$ are defined in a domain of a Carnot group. Assume also that an abstract surface is defined over the domain. In the paper we prove a version of the Lebesgue – Courant lemma (the length and area principle) for the function $f$ in terms of the moduli of families of horizontal curves lying on the level sets of the function $\varphi$.
Keywords: abstract surface, horizontal curve, modulus of a curve family, Makenhaupt weight, weighted Sobolev space.
Mots-clés : Carnot group
@article{SEMR_2021_18_2_a77,
     author = {M. V. Tryamkin},
     title = {The length and area principle for a function on an abstract surface over a domain of a {Carnot} group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1720--1734},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - The length and area principle for a function on an abstract surface over a domain of a Carnot group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1720
EP  - 1734
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/
LA  - ru
ID  - SEMR_2021_18_2_a77
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T The length and area principle for a function on an abstract surface over a domain of a Carnot group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1720-1734
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/
%G ru
%F SEMR_2021_18_2_a77
M. V. Tryamkin. The length and area principle for a function on an abstract surface over a domain of a Carnot group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1720-1734. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a77/

[1] R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, with an appendix by M. Schiffer, Springer-Verlag, New York-Heidelberg, 1977 (Reprint of the 1950 original) | MR

[2] J. Jost, Riemannian geometry and geometric analysis, Universitext, Seventh edition, Springer, Cham, 2017 | DOI | MR | Zbl

[3] G.D. Suvorov, Obobschennyi «printsip dliny i ploschadi» v teorii otobrazhenii [ The generalized “length and area principle” in mapping theory], “Naukova Dumka”, Kiev, 1985 (Russian) | MR

[4] V.M. Miklyukov, Geometricheskii analiz. Differentsialnye formy, pochti-resheniya, pochti kvazikonformnye otobrazheniya [Geometric Analysis. Differential Forms, Almost-solutions, Almost Quasiconformal Mappings], Volgograd Gos. Univ., Volgograd, 2007 (Russian)

[5] V.M. Miklyukov, Conformal Maps of Nonsmooth Surfaces and Their Applications, Xlibris Corporation, Philadelphia, 2008

[6] V.M. Miklyukov, Vvedenie v negladkii analiz [Introduction to Nonsmooth Analysis], Volgograd. Gos. Univ., Volgograd, 2008 (Russian)

[7] V.M. Miklyukov, Funktsii vesovykh klassov Soboleva, anizotropnye metriki i vyrozhdayuschiesya kvazikonformnye otobrazheniya [Functions of Sobolev Weight Classes, Anisotropic Metrics, and Degenerating Quasiconformal Mappings], Volgograd Gos. Univ., Volgograd, 2010 (Russian)

[8] O. Martio, V.M. Miklyukov, M. Vuorinen, “Harnack's inequality for p-harmonic functions on Riemannian manifolds for different exhaustions”, Complex analysis in modern mathematics, FAZIS, M., 2001, 201–230 | MR | Zbl

[9] M.V. Tryamkin, “An Estimate of the Modulus of a Family of Curves on an Abstract Surface over a Cylinder”, Math. Notes, 107:1 (2020), 177–181 | DOI | MR | Zbl

[10] M.V. Tryamkin, “Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring”, Math. Notes, 108:2 (2020), 297–301 | DOI | MR | Zbl

[11] M.V. Tryamkin, “The modulus of a family of curves on an abstract surface over a spherical ring”, Sib. Èlektron. Mat. Izv., 17 (2020), 1816–1822 | DOI | MR | Zbl

[12] M.V. Tryamkin, “The Symmetry Principle and Nondegenerate Families of Curves on Abstract Surfaces”, Siberian Math. Journal, 62:6 (2021), 1140–1151 | DOI | MR | Zbl

[13] G.B. Folland, I.M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[14] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 119 (1989), 1–60 | DOI | MR

[15] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin Heidelberg, 2007 | MR | Zbl

[16] N. Bourbaki, Integration, Chapters 7–9, v. II, Springer-Verlag, Berlin, 2004 | MR

[17] P.K. Rashevsky, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei [Any two points of a totally nonholonomic space can be connected by an admissible curve]”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94 (Russian)

[18] W.L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR

[19] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006 | MR | Zbl

[20] S.K. Vodop'yanov, N.A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings”, Sib. Math. J., 55:5 (2014), 817–848 | DOI | MR | Zbl

[21] T. Kilpeläinen, “Weighted Sobolev spaces and capacity”, Ann. Acad. Sc. Fen. Ser A. I. Math., 19 (1994), 95–113 | MR | Zbl

[22] J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Second edition, Springer, New York, 2013 | MR | Zbl

[23] J. Heinonen, “Calculus on Carnot groups”, Fall School in Analysis (Jyväskylä, 1994), Univ. Jyväskylä, Jyväskylä, 1995, Report 68, 1–31 | MR | Zbl

[24] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl