Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a75, author = {A. F. Voronin}, title = {Some questions on the relationship of the factorization problem of matrix functions and the truncated {Wiener---Hopf} equation in the {Wiener} algebra}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1615--1624}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/} }
TY - JOUR AU - A. F. Voronin TI - Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1615 EP - 1624 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/ LA - en ID - SEMR_2021_18_2_a75 ER -
%0 Journal Article %A A. F. Voronin %T Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1615-1624 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/ %G en %F SEMR_2021_18_2_a75
A. F. Voronin. Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1615-1624. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/
[1] A.F. Voronin, “On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener-Hopf equation”, Russ. Math., 64:12 (2020), 20–28 | DOI | MR | Zbl
[2] A.F. Voronin, “Inhomogeneous vector Riemann boundary value problem and convolutions equation on a finite interval”, Russ. Math., 65:3 (2021), 12–24 | DOI | MR | Zbl
[3] A.F. Voronin, “Truncated Wiener-Hopf equation and matrix function factorization”, Sib. Èlectron. Mat. Izv., 17 (2020), 1217–1226 | DOI | MR | Zbl
[4] M.P. Ganin, “About a Fredholm integral equation with a kernel that depends on the difference between the arguments”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:2 (1963), 31–43 | MR | Zbl
[5] P.P. Zabreiko, A.I, Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik, V.Ya. Stetsenko, Integral equations, Nauka, M., 1968 | Zbl
[6] A.F. Voronin, “Analysis of a convolution integral equation of the second kind on a finite interval with a periodic kernel”, J. Appl. Ind. Math., 4:2 (2010), 282–289 | DOI | MR | Zbl
[7] A.F. Voronin, “On R-linear problem and truncated Wiener-Hopf equation”, Siberian Adv. Math., 30:2 (2020), 143–151 | DOI | MR
[8] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Pabl., Groningen, 1972 | MR
[9] F.D. Gakhov, “The Riemann boundary value problem for a system of n function pairs”, Usp. Mat. Nauk, 7:4 (1952), 3–54 | MR | Zbl
[10] I.Ts. Gokhberg, M.G. Krein, “Systems of integral equations on the half-line with kernels depending on the difference of the arguments”, Usp. Mat. Nauk, 13:2 (1958), 3–72 | MR | Zbl
[11] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, “An overview of matrix factorization theory and operator applications”, Oper. Theory Adv. Appl., 141, Birkhäuser, Basel, 2003, 1–102 | MR | Zbl