Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1615-1624.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the relationship between the equation in convolutions of the second kind on a finite interval (which is also called the truncated Wiener—Hopf equation) and the factorization problem (which is also called the Riemann—Hilbert boundary value problem or the Riemann boundary value problem). In our works published in 2020–2021 (Izv. vuz.), a new approach (method) was proposed to solve the Riemann boundary value problem in the Wiener algebra of order 2. The method is to reduce the Riemann problem to the truncated Wiener—Hopf equation. In this paper, the method is being developed. Here, in the factorization problem, a matrix-function of a sufficiently general form with an arbitrary total index is studied, more general formulas for the relationship between the solutions of the factorization problem and the corresponding truncated Wiener—Hopf equation are also found. In addition, new results are obtained in the theory of equations in convolutions based on the revealed relationship between the problems under consideration.
Keywords: Wiener algebra, factorization problem, truncated Wiener—Hopf equation.
Mots-clés : partial indices
@article{SEMR_2021_18_2_a75,
     author = {A. F. Voronin},
     title = {Some questions on the relationship of the factorization problem of matrix functions and the truncated {Wiener---Hopf} equation in the {Wiener} algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1615--1624},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1615
EP  - 1624
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/
LA  - en
ID  - SEMR_2021_18_2_a75
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1615-1624
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/
%G en
%F SEMR_2021_18_2_a75
A. F. Voronin. Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener---Hopf equation in the Wiener algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1615-1624. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/

[1] A.F. Voronin, “On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener-Hopf equation”, Russ. Math., 64:12 (2020), 20–28 | DOI | MR | Zbl

[2] A.F. Voronin, “Inhomogeneous vector Riemann boundary value problem and convolutions equation on a finite interval”, Russ. Math., 65:3 (2021), 12–24 | DOI | MR | Zbl

[3] A.F. Voronin, “Truncated Wiener-Hopf equation and matrix function factorization”, Sib. Èlectron. Mat. Izv., 17 (2020), 1217–1226 | DOI | MR | Zbl

[4] M.P. Ganin, “About a Fredholm integral equation with a kernel that depends on the difference between the arguments”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:2 (1963), 31–43 | MR | Zbl

[5] P.P. Zabreiko, A.I, Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik, V.Ya. Stetsenko, Integral equations, Nauka, M., 1968 | Zbl

[6] A.F. Voronin, “Analysis of a convolution integral equation of the second kind on a finite interval with a periodic kernel”, J. Appl. Ind. Math., 4:2 (2010), 282–289 | DOI | MR | Zbl

[7] A.F. Voronin, “On R-linear problem and truncated Wiener-Hopf equation”, Siberian Adv. Math., 30:2 (2020), 143–151 | DOI | MR

[8] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Pabl., Groningen, 1972 | MR

[9] F.D. Gakhov, “The Riemann boundary value problem for a system of n function pairs”, Usp. Mat. Nauk, 7:4 (1952), 3–54 | MR | Zbl

[10] I.Ts. Gokhberg, M.G. Krein, “Systems of integral equations on the half-line with kernels depending on the difference of the arguments”, Usp. Mat. Nauk, 13:2 (1958), 3–72 | MR | Zbl

[11] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, “An overview of matrix factorization theory and operator applications”, Oper. Theory Adv. Appl., 141, Birkhäuser, Basel, 2003, 1–102 | MR | Zbl