Mots-clés : partial indices
@article{SEMR_2021_18_2_a75,
author = {A. F. Voronin},
title = {Some questions on the relationship of the factorization problem of matrix functions and the truncated {Wiener{\textemdash}Hopf} equation in the {Wiener} algebra},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1615--1624},
year = {2021},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/}
}
TY - JOUR AU - A. F. Voronin TI - Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1615 EP - 1624 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/ LA - en ID - SEMR_2021_18_2_a75 ER -
%0 Journal Article %A A. F. Voronin %T Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1615-1624 %V 18 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/ %G en %F SEMR_2021_18_2_a75
A. F. Voronin. Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1615-1624. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a75/
[1] A.F. Voronin, “On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener-Hopf equation”, Russ. Math., 64:12 (2020), 20–28 | DOI | MR | Zbl
[2] A.F. Voronin, “Inhomogeneous vector Riemann boundary value problem and convolutions equation on a finite interval”, Russ. Math., 65:3 (2021), 12–24 | DOI | MR | Zbl
[3] A.F. Voronin, “Truncated Wiener-Hopf equation and matrix function factorization”, Sib. Èlectron. Mat. Izv., 17 (2020), 1217–1226 | DOI | MR | Zbl
[4] M.P. Ganin, “About a Fredholm integral equation with a kernel that depends on the difference between the arguments”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:2 (1963), 31–43 | MR | Zbl
[5] P.P. Zabreiko, A.I, Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik, V.Ya. Stetsenko, Integral equations, Nauka, M., 1968 | Zbl
[6] A.F. Voronin, “Analysis of a convolution integral equation of the second kind on a finite interval with a periodic kernel”, J. Appl. Ind. Math., 4:2 (2010), 282–289 | DOI | MR | Zbl
[7] A.F. Voronin, “On R-linear problem and truncated Wiener-Hopf equation”, Siberian Adv. Math., 30:2 (2020), 143–151 | DOI | MR
[8] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Pabl., Groningen, 1972 | MR
[9] F.D. Gakhov, “The Riemann boundary value problem for a system of n function pairs”, Usp. Mat. Nauk, 7:4 (1952), 3–54 | MR | Zbl
[10] I.Ts. Gokhberg, M.G. Krein, “Systems of integral equations on the half-line with kernels depending on the difference of the arguments”, Usp. Mat. Nauk, 13:2 (1958), 3–72 | MR | Zbl
[11] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, “An overview of matrix factorization theory and operator applications”, Oper. Theory Adv. Appl., 141, Birkhäuser, Basel, 2003, 1–102 | MR | Zbl