Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1572-1595.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of 3D 2-tensor field potential part reconstruction by the known value of its normal Radon transform is considered. A singular value decomposition of the operator is constructed for solving the problem. Basic fields are constructed with the use of Jacobi polynomials, Gegenbauer polynomials, and spherical harmonics.
Keywords: symmetric tensor field, potential field, potential, singular value decomposition of an operator, system of orthogonal polynomials.
Mots-clés : normal Radon transform
@article{SEMR_2021_18_2_a74,
     author = {A. P. Polyakova},
     title = {Singular value decomposition of a normal {Radon} transform operator acting on {3D} symmetric 2-tensor fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1572--1595},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/}
}
TY  - JOUR
AU  - A. P. Polyakova
TI  - Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1572
EP  - 1595
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/
LA  - en
ID  - SEMR_2021_18_2_a74
ER  - 
%0 Journal Article
%A A. P. Polyakova
%T Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1572-1595
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/
%G en
%F SEMR_2021_18_2_a74
A. P. Polyakova. Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1572-1595. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/

[1] V.A. Sharafutdinov, Integral geometry for tensor fields, VSP, Utrecht, 1994 | MR | Zbl

[2] E.Yu. Derevtsov, I.E. Svetov, “Tomography of tensor fields in the plain”, Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015), 24–68 | DOI

[3] M. Defrise, G.T. Gullberg, $3D$ reconstruction of tensors and vectors, Technical Report LBNL-54936, LBNL, Berkeley, 2005

[4] I.E. Svetov, “The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric 2-tensor fields in $\mathbb{R}^3$”, Sib. Électron. Mat. Izv., 17 (2020), 1073–1087 | DOI | MR | Zbl

[5] A.M. Cormack, “Representation of a function by its line integrals, with some radiological applications. I”, J. Appl. Phys., 34 (1963), 2722–2727 | DOI | Zbl

[6] A.M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II”, J. Appl. Phys., 35 (1964), 2908–2913 | DOI | Zbl

[7] M. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space”, Numer. Funct. Anal. Optim., 3 (1981), 231–240 | DOI | MR | Zbl

[8] E.T. Quinto, “Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform”, J. Math. Anal. Appl., 95:2 (1983), 437–448 | DOI | MR | Zbl

[9] A.K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl

[10] P. Maass, “Singular value decomposition for Radon transform”, Mathematical Methods in Tomography, eds. G.T. Herman, A.K. Louis, F. Natterer, Springer-Verlag, Berlin–Heidelberg, 1990, 6–14 | MR

[11] P. Maass, “The x-ray transform: singular value decomposition and resolution”, Inverse Probl., 3:4 (1987), 729–741 | DOI | MR | Zbl

[12] E.Yu. Derevtsov, A.V. Efimov, A.K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl

[13] E.Yu. Derevtsov, A.P. Polyakova, “An application of the SVD-method to a problem of integral geometry of 2-tensor fields”, J. Math. Sci., New York, 202:1 (2014), 50–71 | DOI | MR | Zbl

[14] A. Polyakova, “Reconstruction of potential part of 3D vector field by using singular value decomposition”, J. Physics: Conference Series, 410 (2013), 012015 | DOI

[15] A.P. Polyakova, “Reconstruction of a vector field in a ball from its normal Radon transform”, J. Math. Sci., New York, 205:3 (2015), 418–439 | DOI | MR | Zbl

[16] I.E. Svetov, A.P. Polyakova, “Comparison of two algorithms for the numerical solution of two-dimensional vector tomography”, Sib. Électron. Math. Izv., 10 (2013), 90–108 | MR | Zbl

[17] I.E. Svetov, A.P. Polyakova, “Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition”, Sib. Électron. Math. Izv., 12 (2015), 480–499 | MR | Zbl

[18] A.P. Polyakova, I.E. Svetov, “Numerical solution of the problem of reconstructing a potential vector field in the unit ball from its normal Radon transform”, J. Appl. Ind. Math., 9:4 (2015), 547–558 | DOI | MR | Zbl

[19] A.P. Polyakova, I.E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Électron. Math. Izv., 13 (2016), 154–174 | MR | Zbl

[20] S.G. Kazantsev, A.A. Bukhgeim, “Singular value decomposition for 2D fan-beam Radon transform of tensor fields”, J. Inverse Ill-Posed Probl., 12:3 (2004), 245–278 | DOI | MR | Zbl

[21] F. Natterer, The mathematics of computerized tomography, Teubner Verlag, Stuttgart, 1986 | MR | Zbl