Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a74, author = {A. P. Polyakova}, title = {Singular value decomposition of a normal {Radon} transform operator acting on {3D} symmetric 2-tensor fields}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1572--1595}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/} }
TY - JOUR AU - A. P. Polyakova TI - Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1572 EP - 1595 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/ LA - en ID - SEMR_2021_18_2_a74 ER -
%0 Journal Article %A A. P. Polyakova %T Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1572-1595 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/ %G en %F SEMR_2021_18_2_a74
A. P. Polyakova. Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1572-1595. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/
[1] V.A. Sharafutdinov, Integral geometry for tensor fields, VSP, Utrecht, 1994 | MR | Zbl
[2] E.Yu. Derevtsov, I.E. Svetov, “Tomography of tensor fields in the plain”, Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015), 24–68 | DOI
[3] M. Defrise, G.T. Gullberg, $3D$ reconstruction of tensors and vectors, Technical Report LBNL-54936, LBNL, Berkeley, 2005
[4] I.E. Svetov, “The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric 2-tensor fields in $\mathbb{R}^3$”, Sib. Électron. Mat. Izv., 17 (2020), 1073–1087 | DOI | MR | Zbl
[5] A.M. Cormack, “Representation of a function by its line integrals, with some radiological applications. I”, J. Appl. Phys., 34 (1963), 2722–2727 | DOI | Zbl
[6] A.M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II”, J. Appl. Phys., 35 (1964), 2908–2913 | DOI | Zbl
[7] M. Davison, “A singular value decomposition for the Radon transform in n-dimensional Euclidean space”, Numer. Funct. Anal. Optim., 3 (1981), 231–240 | DOI | MR | Zbl
[8] E.T. Quinto, “Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform”, J. Math. Anal. Appl., 95:2 (1983), 437–448 | DOI | MR | Zbl
[9] A.K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl
[10] P. Maass, “Singular value decomposition for Radon transform”, Mathematical Methods in Tomography, eds. G.T. Herman, A.K. Louis, F. Natterer, Springer-Verlag, Berlin–Heidelberg, 1990, 6–14 | MR
[11] P. Maass, “The x-ray transform: singular value decomposition and resolution”, Inverse Probl., 3:4 (1987), 729–741 | DOI | MR | Zbl
[12] E.Yu. Derevtsov, A.V. Efimov, A.K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[13] E.Yu. Derevtsov, A.P. Polyakova, “An application of the SVD-method to a problem of integral geometry of 2-tensor fields”, J. Math. Sci., New York, 202:1 (2014), 50–71 | DOI | MR | Zbl
[14] A. Polyakova, “Reconstruction of potential part of 3D vector field by using singular value decomposition”, J. Physics: Conference Series, 410 (2013), 012015 | DOI
[15] A.P. Polyakova, “Reconstruction of a vector field in a ball from its normal Radon transform”, J. Math. Sci., New York, 205:3 (2015), 418–439 | DOI | MR | Zbl
[16] I.E. Svetov, A.P. Polyakova, “Comparison of two algorithms for the numerical solution of two-dimensional vector tomography”, Sib. Électron. Math. Izv., 10 (2013), 90–108 | MR | Zbl
[17] I.E. Svetov, A.P. Polyakova, “Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition”, Sib. Électron. Math. Izv., 12 (2015), 480–499 | MR | Zbl
[18] A.P. Polyakova, I.E. Svetov, “Numerical solution of the problem of reconstructing a potential vector field in the unit ball from its normal Radon transform”, J. Appl. Ind. Math., 9:4 (2015), 547–558 | DOI | MR | Zbl
[19] A.P. Polyakova, I.E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Électron. Math. Izv., 13 (2016), 154–174 | MR | Zbl
[20] S.G. Kazantsev, A.A. Bukhgeim, “Singular value decomposition for 2D fan-beam Radon transform of tensor fields”, J. Inverse Ill-Posed Probl., 12:3 (2004), 245–278 | DOI | MR | Zbl
[21] F. Natterer, The mathematics of computerized tomography, Teubner Verlag, Stuttgart, 1986 | MR | Zbl