Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1572-1595
Voir la notice de l'article provenant de la source Math-Net.Ru
A problem of 3D 2-tensor field potential part reconstruction by the known value of its normal Radon transform is considered. A singular value decomposition of the operator is constructed for solving the problem. Basic fields are constructed with the use of Jacobi polynomials, Gegenbauer polynomials, and spherical harmonics.
Keywords:
symmetric tensor field, potential field, potential, singular value decomposition of an operator, system of orthogonal polynomials.
Mots-clés : normal Radon transform
Mots-clés : normal Radon transform
@article{SEMR_2021_18_2_a74,
author = {A. P. Polyakova},
title = {Singular value decomposition of a normal {Radon} transform operator acting on {3D} symmetric 2-tensor fields},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1572--1595},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/}
}
TY - JOUR AU - A. P. Polyakova TI - Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1572 EP - 1595 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/ LA - en ID - SEMR_2021_18_2_a74 ER -
%0 Journal Article %A A. P. Polyakova %T Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1572-1595 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/ %G en %F SEMR_2021_18_2_a74
A. P. Polyakova. Singular value decomposition of a normal Radon transform operator acting on 3D symmetric 2-tensor fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1572-1595. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a74/