Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a73, author = {E. A. Pleshcheva}, title = {Periodic interpolating-orthogonal bases of {MRA} and wavelets}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1467--1474}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/} }
E. A. Pleshcheva. Periodic interpolating-orthogonal bases of MRA and wavelets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1467-1474. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/
[1] S. Mallat, “Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$”, Trans. Am. Math. Soc., 315:1 (1989), 69–88 | MR | Zbl
[2] I.Ya. Novikov, S.B. Stechkin, “Foundations of wavelet theory”, Russ. Math. Surv., 53:6 (1998), 1159–1231 | DOI | MR | Zbl
[3] N.I. Chernykh, Yu.N. Subbotin, “Interpolating-orthogonal wavelet systems”, Proc. Steklov Inst. Math., Suppl. 1, 264 (2009), S107–S115 | MR | Zbl
[4] E.A. Pleshcheva, “Interpolating-orthogonal bases of MRA and wavelets”, Trudy Inst. Mat. Mekh. UrO RAN, 26, no. 4, 2020, 224–233 | DOI | MR
[5] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992 | MR | Zbl
[6] A.P. Petukhov, “Periodic wavelets”, Sb. Math., 188:10 (1997), 1481–1506 | DOI | MR | Zbl
[7] A.P. Petukhov, “Periodic discrete wavelets”, St. Petersburg Math. J., 8:3 (1997), 481–503 | MR | Zbl
[8] N.K. Smolentsev, Foundations of the theory of wavelets. Wavelets in MATLAB, DMK Press, M., 2005
[9] M. Skopina, “On construction of multivariate wavelet frames”, Appl. Comput. Harmon. Anal., 27:1 (2009), 55–72 | DOI | MR | Zbl
[10] R.Q. Jia, “Approximation properties of multivariate wavelets”, Math. Comput., 67:222 (1998), 647–665 | DOI | MR | Zbl