Periodic interpolating-orthogonal bases of MRA and wavelets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1467-1474.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the construction of interpolating-orthogonal periodic bases of mutiresolution analysis and corresponding wavelets from the existing orthogonal bases of wavelets. The mask $m(\omega)$ of an orthogonal scaling function $\varphi(x)$ is converted in such a way that the new scaling function $\varphi^I (x)$ generates an interpolation and orthogonal system of integer shifts. According to the resulting system, periodic bases of scaling functions and wavelets are constructed.
Keywords: wavelet, scaling function, multiresolution analysis, interpolating wavelet, orthogonal wavelet, periodic wavelet.
@article{SEMR_2021_18_2_a73,
     author = {E. A. Pleshcheva},
     title = {Periodic interpolating-orthogonal bases of {MRA} and wavelets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1467--1474},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/}
}
TY  - JOUR
AU  - E. A. Pleshcheva
TI  - Periodic interpolating-orthogonal bases of MRA and wavelets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1467
EP  - 1474
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/
LA  - ru
ID  - SEMR_2021_18_2_a73
ER  - 
%0 Journal Article
%A E. A. Pleshcheva
%T Periodic interpolating-orthogonal bases of MRA and wavelets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1467-1474
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/
%G ru
%F SEMR_2021_18_2_a73
E. A. Pleshcheva. Periodic interpolating-orthogonal bases of MRA and wavelets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1467-1474. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a73/

[1] S. Mallat, “Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$”, Trans. Am. Math. Soc., 315:1 (1989), 69–88 | MR | Zbl

[2] I.Ya. Novikov, S.B. Stechkin, “Foundations of wavelet theory”, Russ. Math. Surv., 53:6 (1998), 1159–1231 | DOI | MR | Zbl

[3] N.I. Chernykh, Yu.N. Subbotin, “Interpolating-orthogonal wavelet systems”, Proc. Steklov Inst. Math., Suppl. 1, 264 (2009), S107–S115 | MR | Zbl

[4] E.A. Pleshcheva, “Interpolating-orthogonal bases of MRA and wavelets”, Trudy Inst. Mat. Mekh. UrO RAN, 26, no. 4, 2020, 224–233 | DOI | MR

[5] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992 | MR | Zbl

[6] A.P. Petukhov, “Periodic wavelets”, Sb. Math., 188:10 (1997), 1481–1506 | DOI | MR | Zbl

[7] A.P. Petukhov, “Periodic discrete wavelets”, St. Petersburg Math. J., 8:3 (1997), 481–503 | MR | Zbl

[8] N.K. Smolentsev, Foundations of the theory of wavelets. Wavelets in MATLAB, DMK Press, M., 2005

[9] M. Skopina, “On construction of multivariate wavelet frames”, Appl. Comput. Harmon. Anal., 27:1 (2009), 55–72 | DOI | MR | Zbl

[10] R.Q. Jia, “Approximation properties of multivariate wavelets”, Math. Comput., 67:222 (1998), 647–665 | DOI | MR | Zbl