Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a72, author = {A. A. Shlapunov and N. Tarkhanov}, title = {An open mapping theorem for the {Navier-Stokes} type equations associated with the de {Rham} complex over ${\mathbb R}^n$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1433--1466}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/} }
TY - JOUR AU - A. A. Shlapunov AU - N. Tarkhanov TI - An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1433 EP - 1466 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/ LA - en ID - SEMR_2021_18_2_a72 ER -
%0 Journal Article %A A. A. Shlapunov %A N. Tarkhanov %T An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1433-1466 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/ %G en %F SEMR_2021_18_2_a72
A. A. Shlapunov; N. Tarkhanov. An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1433-1466. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/
[1] R. Adams, J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Academic Press, New York, 2003 | MR | Zbl
[2] A. Bertozzi, A. Majda, Vorticity and incompressible flows, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[3] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of free turbulence”, Nederl. Akad. Wet., Proc., 43 (1940), 2–12 | MR | Zbl
[4] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier-Stokes equations”, Commun. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[5] J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics”, Q. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl
[6] G. de Rham, Variétés Différentiables. Formes, courants, formes harmoniques, Hermann et Cie, Paris, 1955 | MR
[7] L. Escauriaza, G.A. Seregin, V. Šverak, “$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness”, Russ. Math. Surv., 58:2 (2003), 211–250 | DOI | MR | Zbl
[8] A.V. Fursikov, M.I. Vishik, Mathematical problems of statistical hydromechanics, Nauka, M., 1980 | MR | Zbl
[9] I. Gallagher, “Remarks on the global regularity for solutions to the incompressible Navier-Stokes equations”, European Congress of Mathematics, Proceedings of the 6th ECM congress (Krakuw, Poland, July 2–7, 2012), eds. Latala Rafal et al., Eur. Math. Soc., Zürich, 2013, 331–345 | MR | Zbl
[10] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin etc, 1983 | MR | Zbl
[11] T.H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations”, Ann. of Math. 2, 20 (1919), 292–296 | DOI | MR | Zbl
[12] R.S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc., New Ser., 7:1 (1982), 65–222 | DOI | MR | Zbl
[13] E. Hopf, “The partial differential equation $u_t + u_x u = \mu u_{xx}$”, Commun. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[14] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl
[15] A.N. Kolmogorov, “Equations of turbulent movement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58
[16] O.A. Ladyzhenskaya, “Solution “in the large” to the boundary value problem for the Navier-Stokes equations in two space variables”, Sov. Phys., Dokl., 3 (1959), 1128–1131 | MR | Zbl
[17] O.A. Ladyzhenskaya, “Uniqueness and smoothness of generalized solutions of the Navier-Stokes equation”, Semin. Math., 5, V.A. Steklov Math. Inst., Leningr., 1969, 60–66 | MR | Zbl
[18] O.A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, M., 1970 | MR | Zbl
[19] O.A. Ladyzhenskaya, “The sixth millennium problem: Navier-Stokes equations, existence and smoothness”, Russ. Math. Surv., 58:2 (2003), 251–286 | DOI | MR | Zbl
[20] O.A. Ladyzhenskaya, V.A. Solonnikov, “Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations”, J. Sov. Math., 8 (1978), 257–286 | DOI | MR | Zbl
[21] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR | Zbl
[22] L.D. Landau, E.M. Lifshitz, Fluid mechanics, A Course of Theoretical Physics, 6, Pergamon Press, Oxford etc., 1963 | MR | Zbl
[23] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, Journ. de Math., 9 (1934), 331–418 | MR | Zbl
[24] J. Leray, “On the movement of a space-filling viscous liquid”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[25] J.L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer-Verlag, Berlin etc, 1961 | MR | Zbl
[26] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR | Zbl
[27] A. Mera, N. Tarkhanov, A.A. Shlapunov, “Navier-Stokes equations for elliptic complexes”, J. Sib. Fed. Univ., Math. Phys., 12:1 (2019), 3–27 | DOI | MR | Zbl
[28] D.S. Mitrinović, J.E. Pe$\check{c}$arić, A.M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications: East European Series, 53, Kluwer Academic Publishers, Dordrecht etc., 1991 | MR | Zbl
[29] J. Nečas, Direct methods in the theory of elliptic equations, Masson, Paris, 1967 | Zbl
[30] L. Nirenberg, “On elliptic partial differential equations”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 13 (1959), 115–162 | MR | Zbl
[31] A.A. Parfenov, A.A. Shlapunov, “On the stability phenomenon of the Navier-Stokes type equations for elliptic complexes”, Complex Var. Elliptic Equ., 66:6–7 (2021), 1122–1150 | DOI | MR | Zbl
[32] A.I. Perov, “On the question of the structure of the integral funnel”, Nauch. Dokl. Vyssh. Shkoly, Fiz.-Mat. Nauki, 1959:2 (1960), 60–66 | Zbl
[33] P. Plecháč, V. Šverák, “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097 | DOI | MR | Zbl
[34] G. Prodi, “A uniqueness theorem for the Navier-Stokes equations”, Ann. Mat. Pura Appl., IV. Ser., 48 (1959), 173–182 | DOI | MR | Zbl
[35] G.A. Seregin, “A note on weak solutions to the Navier-Stokes equations that are locally in $L_\infty (L^{3,\infty})$”, Algebra Anal., 32:3 (2020), 238–253 | MR | Zbl
[36] G.A. Seregin, “On Type I blowups of suitable weak solutions to Navier-Stokes equations near boundary”, Zap. Nauchn. Sem. POMI, 489, 2020, 81–95 | MR
[37] J. Serrin, “Mathematical Principles of Classical Fluid Mechanics”, Encyclopedia of Physics, Springer-Verlag, 1959, 125–263
[38] J. Serrin, “On the interior regularity of weak solutions of the Navie-Stokes equations”, Arch. Ration. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl
[39] A.A. Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI
[40] S. Smale, “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl
[41] N. Tarkhanov, Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl
[42] M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl
[43] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North Holland Publ. Comp., Amsterdam etc, 1979 | MR | Zbl
[44] R. Temam, Navier-Stokes equations and nonlinear functional analysis, 2 nd ed., SIAM, Philadelphia, 1995 | MR | Zbl
[45] T. Tao, “Finite time blowup for an averaged three-dimensional Navier-Stokes equation”, J. AMS, 29:3 (2016), 601–674 | MR | Zbl