An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1433-1466
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an initial problem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n \times [0,T]$, $n\geq 3$, with a positive time $T$. We prove that the problem induces an open injective mappings on the scales of specially constructed function spaces of Bochner-Sobolev type. In particular, the corresponding statement on the intersection of these classes gives an open mapping theorem for smooth solutions to the Navier-Stokes equations.
Keywords:
Navier-Stokes equations, de Rham complex, open mapping theorem.
@article{SEMR_2021_18_2_a72,
author = {A. A. Shlapunov and N. Tarkhanov},
title = {An open mapping theorem for the {Navier-Stokes} type equations associated with the de {Rham} complex over ${\mathbb R}^n$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1433--1466},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/}
}
TY - JOUR
AU - A. A. Shlapunov
AU - N. Tarkhanov
TI - An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2021
SP - 1433
EP - 1466
VL - 18
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/
LA - en
ID - SEMR_2021_18_2_a72
ER -
%0 Journal Article
%A A. A. Shlapunov
%A N. Tarkhanov
%T An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1433-1466
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/
%G en
%F SEMR_2021_18_2_a72
A. A. Shlapunov; N. Tarkhanov. An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1433-1466. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/