An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1433-1466.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial problem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n \times [0,T]$, $n\geq 3$, with a positive time $T$. We prove that the problem induces an open injective mappings on the scales of specially constructed function spaces of Bochner-Sobolev type. In particular, the corresponding statement on the intersection of these classes gives an open mapping theorem for smooth solutions to the Navier-Stokes equations.
Keywords: Navier-Stokes equations, de Rham complex, open mapping theorem.
@article{SEMR_2021_18_2_a72,
     author = {A. A. Shlapunov and N. Tarkhanov},
     title = {An open mapping theorem for the {Navier-Stokes} type equations associated with the de {Rham} complex over ${\mathbb R}^n$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1433--1466},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/}
}
TY  - JOUR
AU  - A. A. Shlapunov
AU  - N. Tarkhanov
TI  - An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1433
EP  - 1466
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/
LA  - en
ID  - SEMR_2021_18_2_a72
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%A N. Tarkhanov
%T An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1433-1466
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/
%G en
%F SEMR_2021_18_2_a72
A. A. Shlapunov; N. Tarkhanov. An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1433-1466. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a72/

[1] R. Adams, J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Academic Press, New York, 2003 | MR | Zbl

[2] A. Bertozzi, A. Majda, Vorticity and incompressible flows, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[3] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of free turbulence”, Nederl. Akad. Wet., Proc., 43 (1940), 2–12 | MR | Zbl

[4] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier-Stokes equations”, Commun. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[5] J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics”, Q. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[6] G. de Rham, Variétés Différentiables. Formes, courants, formes harmoniques, Hermann et Cie, Paris, 1955 | MR

[7] L. Escauriaza, G.A. Seregin, V. Šverak, “$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness”, Russ. Math. Surv., 58:2 (2003), 211–250 | DOI | MR | Zbl

[8] A.V. Fursikov, M.I. Vishik, Mathematical problems of statistical hydromechanics, Nauka, M., 1980 | MR | Zbl

[9] I. Gallagher, “Remarks on the global regularity for solutions to the incompressible Navier-Stokes equations”, European Congress of Mathematics, Proceedings of the 6th ECM congress (Krakuw, Poland, July 2–7, 2012), eds. Latala Rafal et al., Eur. Math. Soc., Zürich, 2013, 331–345 | MR | Zbl

[10] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin etc, 1983 | MR | Zbl

[11] T.H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations”, Ann. of Math. 2, 20 (1919), 292–296 | DOI | MR | Zbl

[12] R.S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc., New Ser., 7:1 (1982), 65–222 | DOI | MR | Zbl

[13] E. Hopf, “The partial differential equation $u_t + u_x u = \mu u_{xx}$”, Commun. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[14] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl

[15] A.N. Kolmogorov, “Equations of turbulent movement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58

[16] O.A. Ladyzhenskaya, “Solution “in the large” to the boundary value problem for the Navier-Stokes equations in two space variables”, Sov. Phys., Dokl., 3 (1959), 1128–1131 | MR | Zbl

[17] O.A. Ladyzhenskaya, “Uniqueness and smoothness of generalized solutions of the Navier-Stokes equation”, Semin. Math., 5, V.A. Steklov Math. Inst., Leningr., 1969, 60–66 | MR | Zbl

[18] O.A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, M., 1970 | MR | Zbl

[19] O.A. Ladyzhenskaya, “The sixth millennium problem: Navier-Stokes equations, existence and smoothness”, Russ. Math. Surv., 58:2 (2003), 251–286 | DOI | MR | Zbl

[20] O.A. Ladyzhenskaya, V.A. Solonnikov, “Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations”, J. Sov. Math., 8 (1978), 257–286 | DOI | MR | Zbl

[21] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR | Zbl

[22] L.D. Landau, E.M. Lifshitz, Fluid mechanics, A Course of Theoretical Physics, 6, Pergamon Press, Oxford etc., 1963 | MR | Zbl

[23] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, Journ. de Math., 9 (1934), 331–418 | MR | Zbl

[24] J. Leray, “On the movement of a space-filling viscous liquid”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[25] J.L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer-Verlag, Berlin etc, 1961 | MR | Zbl

[26] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR | Zbl

[27] A. Mera, N. Tarkhanov, A.A. Shlapunov, “Navier-Stokes equations for elliptic complexes”, J. Sib. Fed. Univ., Math. Phys., 12:1 (2019), 3–27 | DOI | MR | Zbl

[28] D.S. Mitrinović, J.E. Pe$\check{c}$arić, A.M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications: East European Series, 53, Kluwer Academic Publishers, Dordrecht etc., 1991 | MR | Zbl

[29] J. Nečas, Direct methods in the theory of elliptic equations, Masson, Paris, 1967 | Zbl

[30] L. Nirenberg, “On elliptic partial differential equations”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 13 (1959), 115–162 | MR | Zbl

[31] A.A. Parfenov, A.A. Shlapunov, “On the stability phenomenon of the Navier-Stokes type equations for elliptic complexes”, Complex Var. Elliptic Equ., 66:6–7 (2021), 1122–1150 | DOI | MR | Zbl

[32] A.I. Perov, “On the question of the structure of the integral funnel”, Nauch. Dokl. Vyssh. Shkoly, Fiz.-Mat. Nauki, 1959:2 (1960), 60–66 | Zbl

[33] P. Plecháč, V. Šverák, “Singular and regular solutions of a nonlinear parabolic system”, Nonlinearity, 16:6 (2003), 2083–2097 | DOI | MR | Zbl

[34] G. Prodi, “A uniqueness theorem for the Navier-Stokes equations”, Ann. Mat. Pura Appl., IV. Ser., 48 (1959), 173–182 | DOI | MR | Zbl

[35] G.A. Seregin, “A note on weak solutions to the Navier-Stokes equations that are locally in $L_\infty (L^{3,\infty})$”, Algebra Anal., 32:3 (2020), 238–253 | MR | Zbl

[36] G.A. Seregin, “On Type I blowups of suitable weak solutions to Navier-Stokes equations near boundary”, Zap. Nauchn. Sem. POMI, 489, 2020, 81–95 | MR

[37] J. Serrin, “Mathematical Principles of Classical Fluid Mechanics”, Encyclopedia of Physics, Springer-Verlag, 1959, 125–263

[38] J. Serrin, “On the interior regularity of weak solutions of the Navie-Stokes equations”, Arch. Ration. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl

[39] A.A. Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246 | DOI

[40] S. Smale, “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87:4 (1965), 861–866 | DOI | MR | Zbl

[41] N. Tarkhanov, Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl

[42] M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl

[43] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North Holland Publ. Comp., Amsterdam etc, 1979 | MR | Zbl

[44] R. Temam, Navier-Stokes equations and nonlinear functional analysis, 2 nd ed., SIAM, Philadelphia, 1995 | MR | Zbl

[45] T. Tao, “Finite time blowup for an averaged three-dimensional Navier-Stokes equation”, J. AMS, 29:3 (2016), 601–674 | MR | Zbl