Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a71, author = {A. E. Lipin}, title = {The problem on the measure of the union of line segments in the plane with restrictions on the set of their ends}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1319--1331}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a71/} }
TY - JOUR AU - A. E. Lipin TI - The problem on the measure of the union of line segments in the plane with restrictions on the set of their ends JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1319 EP - 1331 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a71/ LA - ru ID - SEMR_2021_18_2_a71 ER -
%0 Journal Article %A A. E. Lipin %T The problem on the measure of the union of line segments in the plane with restrictions on the set of their ends %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1319-1331 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a71/ %G ru %F SEMR_2021_18_2_a71
A. E. Lipin. The problem on the measure of the union of line segments in the plane with restrictions on the set of their ends. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1319-1331. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a71/
[1] S. Kakeya, “Some problems on maxima and minima regarding ovals”, Tohoku Science Rep., 6 (1917), 71–88 | Zbl
[2] J. Pál, “About an elementary variation problem”, Bull. de l'Acad. de Dan., 3:2 (1920), 1–35 | Zbl
[3] A.S. Besicovitch, “On Kakeya's problem and a similar one”, M. Z., 27 (1927), 312–320 | DOI | Zbl
[4] H.J. van Alphen, “Extension of a sentence by Besicovitsch”, Mathematica, Zutphen B, 10 (1942), 144–157 | Zbl
[5] F. Cunningham, “The Kakeya problem for simply connected and for star-shaped sets”, Am. Math. Mon., 78 (1971), 114–129 | DOI | Zbl
[6] R. Davies, “Some remarks on the Kakeya problem”, Proc. Camb. Philos. Soc., 69 (1971), 417–421 | DOI | Zbl
[7] T. Wolff, “An improved bound for Kakeya type maximal functions”, Rev. Mat. Iberoam., 11:3 (1995), 651–674 | DOI | Zbl
[8] N.H. Katz, T. Tao, “New bounds for Kakeya problems”, J. Anal. Math., 87 (2002), 231–263 | DOI | Zbl
[9] N.H. Katz, J. Zahl, “An improved bound on the Hausdorff dimension of Besicovitch sets in $\mathbb{R}^3$”, J. Am. Math. Soc., 32:1 (2019), 195–259 | DOI | Zbl
[10] J. Bourgain, “Besicovitch type maximal operators and applications to Fourier analysis”, Geom. Funct. Anal., 1:2 (1991), 147–187 | DOI | Zbl
[11] C. Fefferman, “The multiplier problem for the ball”, Ann. Math. (2), 94 (1971), 330–336 | DOI | Zbl
[12] V.I. Bogachev, Measure Theory, Springer, Berlin, 2007 | Zbl
[13] T. Jech, Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003 | Zbl
[14] A.S. Kechris, Classical descriptive set theory, Springer-Verlag, Berlin, 1995 | Zbl
[15] R. Engelking, General Topology, PWN — Polish Scientific Publishers, Warszawa, 1977 | Zbl