Best approximation of differentiation operators on the Sobolev class of functions analytic in a strip
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1286-1298.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution is obtained for interconnected extremal problems on the class of analytic functions in a strip with finite $L^2$-norms of limit values of functions on one boundary line and bounded $L^2$-norms of limit values of the derivative of order $n, n\ge 0,$ on the other boundary line: best approximation of the differentiation operators with respect to the uniform norm on an intermediate line by bounded operators; optimal recovery of the derivative of order k on an intermediate line from values of the function on the boundary line given with an error. An exact Kolmogorov-type inequality is obtained that estimates the uniform norm of the derivative of order $k$ on an intermediate line in terms of the $L^2$-norm of the limit boundary values of the function and the derivative of order $n.$
Keywords: analytic functions, best approximation of the operator, optimal recovery, Kolmogorov inequality.
@article{SEMR_2021_18_2_a70,
     author = {R. R. Akopyan},
     title = {Best approximation of differentiation operators on the {Sobolev} class of functions analytic in a strip},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1286--1298},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a70/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Best approximation of differentiation operators on the Sobolev class of functions analytic in a strip
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1286
EP  - 1298
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a70/
LA  - ru
ID  - SEMR_2021_18_2_a70
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Best approximation of differentiation operators on the Sobolev class of functions analytic in a strip
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1286-1298
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a70/
%G ru
%F SEMR_2021_18_2_a70
R. R. Akopyan. Best approximation of differentiation operators on the Sobolev class of functions analytic in a strip. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1286-1298. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a70/

[1] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 | Zbl

[2] L.V. Taikov, “Kolmogorov-type inequalities and best formulas for numerical differentiation”, Math. Notes, 4:2 (1969), 631–634 | DOI | Zbl

[3] V.V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russ. Math. Surv., 51:6 (1996), 1093–1126 | DOI | Zbl

[4] V.V. Arestov, R.R. Akopyan, “Stechkin's problem on the best approximation of an unbounded operator by bounded ones and related problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 7–31 | DOI

[5] A. Yu. Shadrin, “Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes $W^m_2$”, Math. Notes, 48:4 (1990), 1058–1063 | DOI | Zbl

[6] V.F. Babenko, R.O. Bilichenko, “Inequality of Taikov type for powers of normal operators in Hilbert space”, Researches in Mathematics, 19:3 (2021), 3–7

[7] G.G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal reconstruction of the values of functions and their derivatives from an inexactly specified Fourier transform”, Sb. Math., 195:10 (2004), 1461–1476 | DOI | Zbl

[8] E.V. Vvedenskaya, K. Yu. Osipenko, “Discrete analogs of Taikov's inequality and recovery of sequences given with an error”, Math. Notes, 92:4 (2012), 473–484 | DOI | Zbl

[9] K. Yu. Osipenko, M.I. Stesin, “Optimal recovery of derivatives of bounded analytic and harmonic functions from inaccurate data”, Math. Notes, 53:5 (1993), 513–520 | DOI | Zbl

[10] K. Yu. Osipenko, “Inequalities for derivatives of functions analytical in a strip”, Math. Notes, 56:4 (1994), 1069–1074 | DOI | Zbl

[11] K. Yu. Osipenko, “On n-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a strip”, Russ. Acad. Sci. Izv., Math., 45:1 (1995), 55–78 | Zbl

[12] K. Yu. Osipenko, “The Hardy-Littlewood-Pólya inequality for analytic functions in Hardy-Sobolev spaces”, Sb. Math., 197:3 (2006), 315–334 | DOI | Zbl

[13] R.R. Akopyan, “Best approximation of the operator of analytic continuation on the class of functions analytic in a strip”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 46–54

[14] R.R. Akopyan, “Best approximation of the differentiation operator on a class of functions that are analytic in a strip”, Proc. Steklov Inst. Math., 288:1, Suppl. 1 (2015), S5–S12 | MR | Zbl

[15] R.R. Akopyan, “An analogue of the two-constants theorem and optimal recovery of analytic functions”, Sb. Math., 210:10 (2019), 1348–1360 | DOI | Zbl