On facets of the Newton polytope for the discriminant of the polynomial system
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1180-1188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study normal directions to facets of the Newton polytope of the discriminant of the Laurent polynomial system via the tropical approach. We use the combinatorial construction proposed by Dickenstein, Feichtner and Sturmfels for the tropicalization of algebraic varieties admitting a parametrization by a linear map followed by a monomial map.
Keywords: Newton polytope, tropical variety, Bergman fan, matroid.
Mots-clés : discriminant
@article{SEMR_2021_18_2_a7,
     author = {I. A. Antipova and E. A. Kleshkova},
     title = {On facets of the {Newton} polytope for the discriminant of the polynomial system},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1180--1188},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a7/}
}
TY  - JOUR
AU  - I. A. Antipova
AU  - E. A. Kleshkova
TI  - On facets of the Newton polytope for the discriminant of the polynomial system
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1180
EP  - 1188
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a7/
LA  - en
ID  - SEMR_2021_18_2_a7
ER  - 
%0 Journal Article
%A I. A. Antipova
%A E. A. Kleshkova
%T On facets of the Newton polytope for the discriminant of the polynomial system
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1180-1188
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a7/
%G en
%F SEMR_2021_18_2_a7
I. A. Antipova; E. A. Kleshkova. On facets of the Newton polytope for the discriminant of the polynomial system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1180-1188. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a7/

[1] I.A. Antipova, A.K. Tsikh, “The discriminant locus of a system of n Laurent polynomials in n variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl

[2] F. Ardila, “The Geometry of Matroids”, Notices Amer. Math. Soc., 65:8 (2018), 902–908 | DOI | MR | Zbl

[3] G. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR

[4] R. Bieri, J.R.J. Groves, “The geometry of the set of characters iduced by valuations”, J. Reine Angew. Math., 347 (1984), 168–195 | MR | Zbl

[5] A. Dickenstein, E.M. Feichtner, B. Sturmfels, “Tropical discriminants”, J. Amer. Math. Soc., 20 (2007), 1111–1133 | DOI | MR | Zbl

[6] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, , 2019 http://www.singular.uni-kl.de

[7] E.M. Feichther, B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 | MR

[8] I.M. Gel'fand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants, and Miltidimensional Determinants, Mathematics: Theory Applications, Birkhauser Boston, Inc., Boston, MA, 1994

[9] M.M. Kapranov, “A characterization of A-discriminant hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl

[10] D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, 161, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[11] E.N. Mikhalkin, V.A. Stepanenko, A.K. Tsikh, “Geometry of Factorization Identities for Discriminants”, Dokl. Math., 102 (2020), 279–282 | DOI | Zbl

[12] E. Mikhalkin, V. Stepanenko, A. Tsikh, “Blow-ups for the Horn-Kapranov parametrization of the classical discriminant”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Series of Congress Reports, 18, eds. P. Exner et al., EMS Publishing House, 2021, 315–329

[13] J.G. Oxley, Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011 | MR | Zbl