On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $2$-step Carnot groups with $1$-dimensional center, a method for defining the exact values of the constant $q_2$ in a $(1,q_2)$-generalized triangle inequality for their Box-quasimetrics is developed. The exact values of the constant $q_2$ are defined for $4$-, $5$-, and $6$-dimensional $2$-step Carnot groups with $3$-dimensional horisontal subbundle.
Keywords: $(q_1,q_2)$-quasimetric spase, exact value
Mots-clés : Carnot group, Box-quasimetric.
@article{SEMR_2021_18_2_a69,
     author = {A. V. Greshnov},
     title = {On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for {Box-quasimetrics} on $2$-step {Carnot} groups with $1$-dimensional center},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1251--1260},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1251
EP  - 1260
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/
LA  - en
ID  - SEMR_2021_18_2_a69
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1251-1260
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/
%G en
%F SEMR_2021_18_2_a69
A. V. Greshnov. On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/

[1] Arutyunov A. V., Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya RAN: Ser. Mat., 82:2 (2018), 3–32 | DOI | MR | Zbl

[2] Arutyunov A. V., Greshnov A. V., “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | Zbl

[3] Arutyunov A. V., Greshnov A. V., “Coincidence points of multi-valued mappings in $(q_1,q_2)$-quasimetric spaces”, Dokl. Math., 96:2 (2017), 438–441 | DOI | MR | Zbl

[4] Arutyunov A. V., Greshnov A. V., Lokoutsievskii L. V., Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[5] Sengupta R., “About fixed points of contraction mappings acting in $(q_1,q_2)$-quasi-metric spaces”, Eurasian Math. Jour., 8:3 (2017), 70–76 | MR | Zbl

[6] Greshnov A. V., “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics”, Siberian Adv. Math., 27:4 (2017), 253–262 | DOI | MR | Zbl

[7] Greshnov A. V., “Regularization of distance functions and separation axioms on $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 14 (2017), 765–773 | MR | Zbl

[8] Greshnov A. V., “Some problems of regularity of $f$-quasimetrics”, Siberian Electronic Mathematical Reports, 15 (2018), 355–361 | MR | Zbl

[9] Greshnov A. V., Zhukov R. I., “Completeness theorem in $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 16 (2018), 2090–2097 | Zbl

[10] Wilson W. A., “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR

[11] Vodopyanov S. K., “Geometry of Carnot-Carathéodory spaces and differentiability of mappings”, Contemporary Mathematics, 424, 2007, 247–301 | DOI | MR | Zbl

[12] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot-Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[13] Greshnov A. V., “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 | DOI | MR

[14] Greshnov A. V., “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 | DOI | MR

[15] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1–2 (1985), 103–47 | DOI | MR

[16] Greshnov A. V., “Local approximation of uniformly regular Carnot -Carathéodory quasispaces by their tangent”, Siberian Math. J., 48:2 (2007), 229–248 | DOI | MR | Zbl

[17] Greshnov A. V., “Metrics and tangent cones of uniformly regular Carnot-Carathéodory spaces”, Siberian Math. J., 47:2 (2006), 209–238 | DOI | MR | Zbl

[18] Greshnov A. V., Tryamkin M. V., “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 | DOI | MR | Zbl

[19] Academic Press, New York, 1982 | MR | Zbl | Zbl

[20] Postnikov M. M., Lie Groups and Lie Algebras. Lectures in Geometry. Semester V, Nauka, M., 1982 ; Mir, M., 1986 | Zbl | MR

[21] Rothchild L. P., Stein E. S., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR

[22] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer–Verlag, Berlin–Heidelberg, 2007 | MR