Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a69, author = {A. V. Greshnov}, title = {On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for {Box-quasimetrics} on $2$-step {Carnot} groups with $1$-dimensional center}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1251--1260}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/} }
TY - JOUR AU - A. V. Greshnov TI - On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1251 EP - 1260 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/ LA - en ID - SEMR_2021_18_2_a69 ER -
%0 Journal Article %A A. V. Greshnov %T On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1251-1260 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/ %G en %F SEMR_2021_18_2_a69
A. V. Greshnov. On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/