Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a69, author = {A. V. Greshnov}, title = {On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for {Box-quasimetrics} on $2$-step {Carnot} groups with $1$-dimensional center}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1251--1260}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/} }
TY - JOUR AU - A. V. Greshnov TI - On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1251 EP - 1260 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/ LA - en ID - SEMR_2021_18_2_a69 ER -
%0 Journal Article %A A. V. Greshnov %T On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1251-1260 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/ %G en %F SEMR_2021_18_2_a69
A. V. Greshnov. On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/
[1] Arutyunov A. V., Greshnov A. V., “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya RAN: Ser. Mat., 82:2 (2018), 3–32 | DOI | MR | Zbl
[2] Arutyunov A. V., Greshnov A. V., “Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | Zbl
[3] Arutyunov A. V., Greshnov A. V., “Coincidence points of multi-valued mappings in $(q_1,q_2)$-quasimetric spaces”, Dokl. Math., 96:2 (2017), 438–441 | DOI | MR | Zbl
[4] Arutyunov A. V., Greshnov A. V., Lokoutsievskii L. V., Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl
[5] Sengupta R., “About fixed points of contraction mappings acting in $(q_1,q_2)$-quasi-metric spaces”, Eurasian Math. Jour., 8:3 (2017), 70–76 | MR | Zbl
[6] Greshnov A. V., “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics”, Siberian Adv. Math., 27:4 (2017), 253–262 | DOI | MR | Zbl
[7] Greshnov A. V., “Regularization of distance functions and separation axioms on $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 14 (2017), 765–773 | MR | Zbl
[8] Greshnov A. V., “Some problems of regularity of $f$-quasimetrics”, Siberian Electronic Mathematical Reports, 15 (2018), 355–361 | MR | Zbl
[9] Greshnov A. V., Zhukov R. I., “Completeness theorem in $(q_1, q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 16 (2018), 2090–2097 | Zbl
[10] Wilson W. A., “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR
[11] Vodopyanov S. K., “Geometry of Carnot-Carathéodory spaces and differentiability of mappings”, Contemporary Mathematics, 424, 2007, 247–301 | DOI | MR | Zbl
[12] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot-Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl
[13] Greshnov A. V., “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 | DOI | MR
[14] Greshnov A. V., “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 | DOI | MR
[15] Nagel A., Stein E. M., Wainger S., “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1–2 (1985), 103–47 | DOI | MR
[16] Greshnov A. V., “Local approximation of uniformly regular Carnot -Carathéodory quasispaces by their tangent”, Siberian Math. J., 48:2 (2007), 229–248 | DOI | MR | Zbl
[17] Greshnov A. V., “Metrics and tangent cones of uniformly regular Carnot-Carathéodory spaces”, Siberian Math. J., 47:2 (2006), 209–238 | DOI | MR | Zbl
[18] Greshnov A. V., Tryamkin M. V., “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 | DOI | MR | Zbl
[19] Academic Press, New York, 1982 | MR | Zbl | Zbl
[20] Postnikov M. M., Lie Groups and Lie Algebras. Lectures in Geometry. Semester V, Nauka, M., 1982 ; Mir, M., 1986 | Zbl | MR
[21] Rothchild L. P., Stein E. S., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR
[22] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer–Verlag, Berlin–Heidelberg, 2007 | MR