On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260

Voir la notice de l'article provenant de la source Math-Net.Ru

For $2$-step Carnot groups with $1$-dimensional center, a method for defining the exact values of the constant $q_2$ in a $(1,q_2)$-generalized triangle inequality for their Box-quasimetrics is developed. The exact values of the constant $q_2$ are defined for $4$-, $5$-, and $6$-dimensional $2$-step Carnot groups with $3$-dimensional horisontal subbundle.
Keywords: $(q_1,q_2)$-quasimetric spase, exact value
Mots-clés : Carnot group, Box-quasimetric.
@article{SEMR_2021_18_2_a69,
     author = {A. V. Greshnov},
     title = {On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for {Box-quasimetrics} on $2$-step {Carnot} groups with $1$-dimensional center},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1251--1260},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1251
EP  - 1260
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/
LA  - en
ID  - SEMR_2021_18_2_a69
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1251-1260
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/
%G en
%F SEMR_2021_18_2_a69
A. V. Greshnov. On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1251-1260. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a69/