On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1146-1152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of uniqueness for a solution to the inhomogeneous generalized Wiener–Hopf equation whose kernel is a probability distribution with finite positive mean.
Keywords: integral equation, inhomogeneous equation, Wiener–Hopf equation, probability distribution, positive mean.
@article{SEMR_2021_18_2_a67,
     author = {M. S. Sgibnev},
     title = {On the uniqueness of the solution to the {Wiener--Hopf} equation with probability kernel},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1146--1152},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1146
EP  - 1152
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/
LA  - en
ID  - SEMR_2021_18_2_a67
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1146-1152
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/
%G en
%F SEMR_2021_18_2_a67
M. S. Sgibnev. On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1146-1152. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/

[1] M.S. Sgibnev, “Homogeneous conservative Wiener-Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350 | DOI | Zbl

[2] W. Feller, An introduction to probability theory and its applications, v. II, Wiley, New York etc, 1966 | Zbl

[3] M.S. Sgibnev, “The discrete Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Math. J., 60:3 (2019), 516–525 | DOI | Zbl

[4] M.S. Sgibnev, “The Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Electron. Mat. Izv., 17 (2020), 1288–1298 | DOI | Zbl

[5] M.S. Sgibnev, “Equivalence of two conditions on singular components”, Stat. Probab. Lett., 40:2 (1998), 127–131 | DOI | Zbl

[6] C. Stone, “On absolutely continuous components and renewal theory”, Ann. Math. Stat., 37 (1966), 271–275 | DOI | Zbl

[7] P.R. Halmos, Measure Theory, Springer, New York etc, 1974 | Zbl

[8] M.S. Sgibnev, “The uniqueness of a solution to the renewal type system of integral equations on the line”, Sib. Math. J., 51:1 (2010), 168–173 | DOI | Zbl

[9] M.G. Krein, “Integral equations on a half-line with kernel depending upon the difference of the arguements”, Usp. Mat. Nauk, 13:5(83) (1958), 3–120 | Zbl

[10] A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, Mineola, 1999; 1975 | MR