Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a67, author = {M. S. Sgibnev}, title = {On the uniqueness of the solution to the {Wiener--Hopf} equation with probability kernel}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1146--1152}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/} }
TY - JOUR AU - M. S. Sgibnev TI - On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1146 EP - 1152 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/ LA - en ID - SEMR_2021_18_2_a67 ER -
%0 Journal Article %A M. S. Sgibnev %T On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1146-1152 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/ %G en %F SEMR_2021_18_2_a67
M. S. Sgibnev. On the uniqueness of the solution to the Wiener--Hopf equation with probability kernel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1146-1152. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a67/
[1] M.S. Sgibnev, “Homogeneous conservative Wiener-Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350 | DOI | Zbl
[2] W. Feller, An introduction to probability theory and its applications, v. II, Wiley, New York etc, 1966 | Zbl
[3] M.S. Sgibnev, “The discrete Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Math. J., 60:3 (2019), 516–525 | DOI | Zbl
[4] M.S. Sgibnev, “The Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Electron. Mat. Izv., 17 (2020), 1288–1298 | DOI | Zbl
[5] M.S. Sgibnev, “Equivalence of two conditions on singular components”, Stat. Probab. Lett., 40:2 (1998), 127–131 | DOI | Zbl
[6] C. Stone, “On absolutely continuous components and renewal theory”, Ann. Math. Stat., 37 (1966), 271–275 | DOI | Zbl
[7] P.R. Halmos, Measure Theory, Springer, New York etc, 1974 | Zbl
[8] M.S. Sgibnev, “The uniqueness of a solution to the renewal type system of integral equations on the line”, Sib. Math. J., 51:1 (2010), 168–173 | DOI | Zbl
[9] M.G. Krein, “Integral equations on a half-line with kernel depending upon the difference of the arguements”, Usp. Mat. Nauk, 13:5(83) (1958), 3–120 | Zbl
[10] A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publications, Mineola, 1999; 1975 | MR