Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a66, author = {A. S. Romanov}, title = {Extremality of $p$-harmonic functions in $R^2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1015--1022}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a66/} }
A. S. Romanov. Extremality of $p$-harmonic functions in $R^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1015-1022. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a66/
[1] T. Iwaniec, J.J. Manfredi, “Regularity p-harmonic functions on the plane”, Rev. Mat. Iberoam., 5:1–2 (1989), 1–19 | DOI | Zbl
[2] J.J. Manfredi, “p-harmonic functions in the plane”, Proc. AMS, 103:2 (1988), 473–479 | Zbl
[3] B. Fuglede, “Extremal length and functional completion”, Acta math., 98:3–4 (1957), 171–219 | DOI | Zbl
[4] A.S. Romanov, “Mappings related to extremal functions for p-capacity”, Sib. Électron. Mat. Izv., 16 (2019), 1295–1311 | DOI | Zbl
[5] V.M. Gold'shtein, Yu.G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer Academic Publishers Group, Dordrecht etc, 1990 | Zbl
[6] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin etc, 1985 | Zbl
[7] V.A. Shlyk, “Capacity of a condenser and modulus of a family of separating surfaces”, J. Sov. Math., 59:6 (1992), 1240–1248 | DOI | Zbl