Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a65, author = {A. A. Golubkov}, title = {Inverse problem for the {Sturm--Liouville} equation with piecewise entire potential and piecewise constant weight on a curve}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {951--974}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/} }
TY - JOUR AU - A. A. Golubkov TI - Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 951 EP - 974 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/ LA - en ID - SEMR_2021_18_2_a65 ER -
%0 Journal Article %A A. A. Golubkov %T Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 951-974 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/ %G en %F SEMR_2021_18_2_a65
A. A. Golubkov. Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 951-974. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/
[1] V.A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser, Basel etc, 1986 | Zbl
[2] B.M. Levitan, Inverse Sturm-Liouville problems, VNU Sci. Press, Utrecht, 1987 | Zbl
[3] V.A. Yurko, Method of spectral mappings in the inverse problem theory, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2002 | Zbl
[4] Kh.K. Ishkin, “On a trivial monodromy criterion for the Sturm-Liouville equation”, Math. Notes, 94:4 (2013), 508–523 | DOI | Zbl
[5] J.J. Duistermaat, F.A. Grünbaum, “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–240 | DOI | Zbl
[6] A.A. Oblomkov, “Monodromy-free Schrödinger operators with quadratically increasing potentials”, Theor. Math. Phys., 121:3 (1999), 1574–1584 | DOI | Zbl
[7] J. Gibbons, A.P. Veselov, “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50:1 (2009), 013513 | DOI | Zbl
[8] A.A. Golubkov, “Inverse problem for Sturm-Liouville operators in the complex plane”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 18:2 (2018), 144–156 | DOI | Zbl
[9] A.A. Golubkov, “Asymptotics of transfer matrix of Sturm-Liouville equation with piecewise-entire potential function on a curve”, Mosc. Univ. Math. Bull., 74:2 (2019), 65–69 | DOI | Zbl
[10] A.A. Golubkov, Y.V. Kuryshova, “Inverse problem for Sturm-Liouville operators on a curve”, Tamkang J. Math., 50:3 (2019), 349–359 | DOI | Zbl
[11] A.A. Golubkov, V.A. Makarov, “Reconstruction of the coordinate dependence of the diagonal form of the dielectric permittivity tensor of a one-dimensionally inhomogeneous medium”, Mosc. Univ. Phys. Bull., 65:3 (2010), 189–194 | DOI | Zbl
[12] Kh.K. Ishkin, “Localization criterion for the spectrum of the Sturm-Liouville operator on a curve”, St. Petersbg. Math. J., 28:1 (2017), 37–63 | DOI | Zbl
[13] W. Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, New York, 1987 | Zbl
[14] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, New York etc, 1955 | Zbl
[15] M.A. Lavrent'ev, B.V. Shabat, Methods for the theory of functions of a complex variable, Nauka, M., 1987 | Zbl
[16] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970 | Zbl
[17] A.A. Golubkov, V.A. Makarov, “Inverse spectral problem for a generalized Sturm-Liouville equation with complex-valued coefficients”, Differ. Equ., 47:10 (2011), 1514–1519 | DOI | Zbl
[18] B. Ya. Levin, Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, Amer. Math. Soc., Providence, R.I., 1964 | DOI | Zbl
[19] A.A. Golubkov, “A boundary value problem for the Sturm-Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions”, Sib. Électron. Mat. Izv., 16 (2019), 1005–1027 | DOI | Zbl
[20] A.A. Golubkov, V.A. Makarov, “Spectroscopy of one-dimensionally inhomogeneous linear absorbing media with arbitrary frequency dispersion”, J. Modern Optics, 59:7 (2012), 591–600 | DOI
[21] A.A. Golubkov, V.A. Makarov, “Determining the coordinate dependence of some components of the cubic susceptibility tensor $ \hat \chi^{(3)}(z, \omega,-\omega,\omega,\omega) $ of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion”, Quantum Electronics, 40:11 (2010), 1045–1050 | DOI