Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 951-974.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Sturm–Liouville equation with a piecewise entire potential and a non-zero piecewise constant weight function on a curve of an arbitrary shape lying on the complex plane is considered. For such equation, the inverse spectral problem is posed with respect to the ratio of elements of one column or one row of the transfer matrix along the curve. The uniqueness of the solution to the problem is proved with the help of the method of unit transfer matrix using the study of asymptotic solutions of the Sturm–Liouville equation for large values of the absolute value of the spectral parameter. The obtained results allowed to consider inverse problem for a previously unexplored class of Sturm–Liouville equations with three unknown coefficients on a segment of the real axis.
Keywords: inverse spectral problem on a curve, the method of unit transfer matrix, asymptotics of solutions.
@article{SEMR_2021_18_2_a65,
     author = {A. A. Golubkov},
     title = {Inverse problem for the {Sturm--Liouville} equation with piecewise entire potential and piecewise constant weight on a curve},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {951--974},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 951
EP  - 974
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/
LA  - en
ID  - SEMR_2021_18_2_a65
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 951-974
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/
%G en
%F SEMR_2021_18_2_a65
A. A. Golubkov. Inverse problem for the Sturm--Liouville equation with piecewise entire potential and piecewise constant weight on a curve. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 951-974. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a65/

[1] V.A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser, Basel etc, 1986 | Zbl

[2] B.M. Levitan, Inverse Sturm-Liouville problems, VNU Sci. Press, Utrecht, 1987 | Zbl

[3] V.A. Yurko, Method of spectral mappings in the inverse problem theory, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2002 | Zbl

[4] Kh.K. Ishkin, “On a trivial monodromy criterion for the Sturm-Liouville equation”, Math. Notes, 94:4 (2013), 508–523 | DOI | Zbl

[5] J.J. Duistermaat, F.A. Grünbaum, “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–240 | DOI | Zbl

[6] A.A. Oblomkov, “Monodromy-free Schrödinger operators with quadratically increasing potentials”, Theor. Math. Phys., 121:3 (1999), 1574–1584 | DOI | Zbl

[7] J. Gibbons, A.P. Veselov, “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50:1 (2009), 013513 | DOI | Zbl

[8] A.A. Golubkov, “Inverse problem for Sturm-Liouville operators in the complex plane”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 18:2 (2018), 144–156 | DOI | Zbl

[9] A.A. Golubkov, “Asymptotics of transfer matrix of Sturm-Liouville equation with piecewise-entire potential function on a curve”, Mosc. Univ. Math. Bull., 74:2 (2019), 65–69 | DOI | Zbl

[10] A.A. Golubkov, Y.V. Kuryshova, “Inverse problem for Sturm-Liouville operators on a curve”, Tamkang J. Math., 50:3 (2019), 349–359 | DOI | Zbl

[11] A.A. Golubkov, V.A. Makarov, “Reconstruction of the coordinate dependence of the diagonal form of the dielectric permittivity tensor of a one-dimensionally inhomogeneous medium”, Mosc. Univ. Phys. Bull., 65:3 (2010), 189–194 | DOI | Zbl

[12] Kh.K. Ishkin, “Localization criterion for the spectrum of the Sturm-Liouville operator on a curve”, St. Petersbg. Math. J., 28:1 (2017), 37–63 | DOI | Zbl

[13] W. Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, New York, 1987 | Zbl

[14] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, New York etc, 1955 | Zbl

[15] M.A. Lavrent'ev, B.V. Shabat, Methods for the theory of functions of a complex variable, Nauka, M., 1987 | Zbl

[16] A.N. Kolmogorov, S.V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970 | Zbl

[17] A.A. Golubkov, V.A. Makarov, “Inverse spectral problem for a generalized Sturm-Liouville equation with complex-valued coefficients”, Differ. Equ., 47:10 (2011), 1514–1519 | DOI | Zbl

[18] B. Ya. Levin, Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, Amer. Math. Soc., Providence, R.I., 1964 | DOI | Zbl

[19] A.A. Golubkov, “A boundary value problem for the Sturm-Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions”, Sib. Électron. Mat. Izv., 16 (2019), 1005–1027 | DOI | Zbl

[20] A.A. Golubkov, V.A. Makarov, “Spectroscopy of one-dimensionally inhomogeneous linear absorbing media with arbitrary frequency dispersion”, J. Modern Optics, 59:7 (2012), 591–600 | DOI

[21] A.A. Golubkov, V.A. Makarov, “Determining the coordinate dependence of some components of the cubic susceptibility tensor $ \hat \chi^{(3)}(z, \omega,-\omega,\omega,\omega) $ of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion”, Quantum Electronics, 40:11 (2010), 1045–1050 | DOI