Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a62, author = {A. S. Kozelkov and O. L. Krutyakova and V. V. Kurulin and D. Yu. Strelets and M. A. Shishlenin}, title = {The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on {Navier-Stokes} equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1238--1250}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/} }
TY - JOUR AU - A. S. Kozelkov AU - O. L. Krutyakova AU - V. V. Kurulin AU - D. Yu. Strelets AU - M. A. Shishlenin TI - The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1238 EP - 1250 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/ LA - en ID - SEMR_2021_18_2_a62 ER -
%0 Journal Article %A A. S. Kozelkov %A O. L. Krutyakova %A V. V. Kurulin %A D. Yu. Strelets %A M. A. Shishlenin %T The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1238-1250 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/ %G en %F SEMR_2021_18_2_a62
A. S. Kozelkov; O. L. Krutyakova; V. V. Kurulin; D. Yu. Strelets; M. A. Shishlenin. The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1238-1250. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/
[1] J.W. Strutt, The Theory of Sound, v. I, Macmillan, London, 1894 | Zbl
[2] J.W. Strutt, The Theory of Sound, v. II, Macmillan, London, 1896 | Zbl
[3] S. Kowalczyk, J. Felicjancik, “Numerical and experimental propeller noise investigations”, Ocean Engineering, 120 (2016), 108–115 | DOI
[4] N. Fukushima, K. Fukagata, N. Kasagi, H. Noguchi, K. Tanimoto, “Numerical and experimental study on turbulent thermal mixing in a T-junction flow”, The 6th ASME-JSME Thermal Engeneering Joint Conference (March 16–20, 2003)
[5] L.G. Loitsyanskii, Mechanics of liquids and gases, Pergamon Press, Oxford etc, 1972 | Zbl
[6] S.H. Wasala, R.C. Storey, S.E. Norris, J.E. Cater, “Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation”, Journal of Wind Engineering and Industrial Aerodynamics, 145 (2015), 17–29 | DOI
[7] J.H. Ferziger, M. Perić, Computational methods for fluid dynamics, Springer, Berlin, 2002 | Zbl
[8] S.V. Lashkin, A.S. Kozelkov, A.V. Yalozo, V.Y. Gerasimov, D.K. Zelensky, “Efficiency analysis of the parallel implementation of the SIMPLE algorithm on multiprocessor computers”, J. Appl. Mech. Tech. Phy., 58:7 (2017), 1242–1259 | DOI
[9] A.S. Kozelkov, S.V. Lashkin, V.R. Efremov, K.N. Volkov, Yu.A. Tsibereva, N.V. Tarasova, “An implicit algorithm of solving Navier-Stokes equations to simulate flows in anisotropic porous media”, Comput. Fluids, 160 (2018), 164–174 | DOI | Zbl
[10] Z.J. Chen, A.J. Przekwas, “A coupled pressure-based computational method for incompressible/compressible flows”, J. Comput. Phys., 229:24 (2010), 9150–9165 | DOI | Zbl
[11] M. Cianferr, V. Armenio, S. Ianniello, “Hydroacoustic noise from different geometries”, Int. J. Heat Fluid flow, 70 (2018), 348–362 | DOI
[12] A. Inasawa, T. Nakano, M. Asai, “Development of wake vortices and the associated sound radiation in the flow past a rectangular cylinder of various aspect ratios”, 7th International Simposium on Turbulence and Shear Flow Phenomena (Ottava, Canada, July 27–31, 2011)
[13] A. Bodling, A. Sharm, “Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil”, Journal of Sound and Vibration, 453 (2019), 314–327 | DOI
[14] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI
[15] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, S.V. Lashkin, E.S. Tyatyushkina, “Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids”, Comput. Math. Math. Phys., 57:6 (2017), 1036–1047 | DOI | Zbl
[16] A.S. Kozelkov, V.V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows”, Comput. Math. Math. Phys., 55:7 (2015), 1232–1241 | DOI | Zbl
[17] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | Zbl
[18] A.S. Kozelkov, “The numerical technique for the landslide tsunami simulations based on Navier-Stokes equations”, J. Appl. Mech. Tech. Phy., 58:7 (2017), 1192–1210 | DOI
[19] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows, Thesis submitted for the degree of doctor, Department of Mechanical Engineering, Imperial College of Science, 1996
[20] K. Stüben, U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, Lect. Notes Math., 960, Springer, 1982 | Zbl
[21] Van Emden Henson, U. Meier-Yang, “Boomer AMG: A parallel algebraic multigrid solver and preconditioner”, Appl. Numer. Math., 41:1 (2002), 155–177 | DOI | Zbl
[22] K.N. Volkov, A.S. Kozelkov, S.V. Lashkin, N.V. Tarasova, A.V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Comput. Math. Math. Phys., 57:12 (2017), 2030–2046 | DOI | Zbl
[23] J.D. Fenton, “A fifth-order Stokes theory for steady waves”, Journal of Waterway Port Coastal and Ocean Engineering-asce, 111:2 (1985), 216–234 | DOI
[24] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103:1 (1992), 16–42 | DOI | Zbl
[25] R. Jirik, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf, J. Jan, “Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59:2 (2012), 254–264 | DOI
[26] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231–248 | DOI
[27] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610–2620 | DOI
[28] M.V. Klibanov, “Travel time tomography with formally determined incomplete data in 3D”, Inverse Probl. Imaging, 13:6 (2019), 1367–1393 | DOI | Zbl
[29] M.V. Klibanov, “On the travel time tomography problem in 3D”, J. Inverse Ill-Posed Probl., 27:4 (2019), 591–607 | DOI | Zbl
[30] S.I. Kabanikhin, D.V. Klyuchinskiy, I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Direct and inverse problems for conservation laws”, Continuum mechanics, applied mathematics and scientific computing: Godunov's legacy, Springer, Cham, 2020, 217–222 | DOI | MR
[31] S.I. Kabanikhin, I.M. Kulikov, M.A. Shishlenin, “An algorithm for recovering the characteristics of the initial state of supernova”, Comput. Math. Math. Phys., 60:6 (2020), 1008–1016 | DOI | Zbl
[32] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287–297 | DOI | Zbl
[33] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient Descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 | DOI
[34] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 | DOI
[35] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations”, J. Physics: Conference Series, 1715:1 (2021), 012038 | DOI
[36] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Physics, 439 (2021), 110374 | DOI