The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1238-1250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space and time resolution needed to simulate the propagation of acoustic perturbations in a liquid medium is estimated. The dependence of the solution accuracy on the parameters of an iterative procedure and a numerical discretization of the equations is analyzed. As a numerical method, a widely used method called SIMPLE is used together with a finite-volume discretization of the equations. A problem of propagation of perturbations in a liquid medium from a harmonic source of oscillations is considered for the estimation. Estimates of the required space and time resolution are obtained to provide an acceptable accuracy of the solution. The estimates are tested using the problem of propagation of harmonic waves from a point source in a liquid medium.
Keywords: hydroacoustics, numerical simulation, Navier-Stokes equations, method SIMPLE, finite-volume discretization, numerical dissipation, Logos software package, acoustic tomography.
@article{SEMR_2021_18_2_a62,
     author = {A. S. Kozelkov and O. L. Krutyakova and V. V. Kurulin and D. Yu. Strelets and M. A. Shishlenin},
     title = {The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on {Navier-Stokes} equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1238--1250},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/}
}
TY  - JOUR
AU  - A. S. Kozelkov
AU  - O. L. Krutyakova
AU  - V. V. Kurulin
AU  - D. Yu. Strelets
AU  - M. A. Shishlenin
TI  - The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1238
EP  - 1250
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/
LA  - en
ID  - SEMR_2021_18_2_a62
ER  - 
%0 Journal Article
%A A. S. Kozelkov
%A O. L. Krutyakova
%A V. V. Kurulin
%A D. Yu. Strelets
%A M. A. Shishlenin
%T The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1238-1250
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/
%G en
%F SEMR_2021_18_2_a62
A. S. Kozelkov; O. L. Krutyakova; V. V. Kurulin; D. Yu. Strelets; M. A. Shishlenin. The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1238-1250. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a62/

[1] J.W. Strutt, The Theory of Sound, v. I, Macmillan, London, 1894 | Zbl

[2] J.W. Strutt, The Theory of Sound, v. II, Macmillan, London, 1896 | Zbl

[3] S. Kowalczyk, J. Felicjancik, “Numerical and experimental propeller noise investigations”, Ocean Engineering, 120 (2016), 108–115 | DOI

[4] N. Fukushima, K. Fukagata, N. Kasagi, H. Noguchi, K. Tanimoto, “Numerical and experimental study on turbulent thermal mixing in a T-junction flow”, The 6th ASME-JSME Thermal Engeneering Joint Conference (March 16–20, 2003)

[5] L.G. Loitsyanskii, Mechanics of liquids and gases, Pergamon Press, Oxford etc, 1972 | Zbl

[6] S.H. Wasala, R.C. Storey, S.E. Norris, J.E. Cater, “Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation”, Journal of Wind Engineering and Industrial Aerodynamics, 145 (2015), 17–29 | DOI

[7] J.H. Ferziger, M. Perić, Computational methods for fluid dynamics, Springer, Berlin, 2002 | Zbl

[8] S.V. Lashkin, A.S. Kozelkov, A.V. Yalozo, V.Y. Gerasimov, D.K. Zelensky, “Efficiency analysis of the parallel implementation of the SIMPLE algorithm on multiprocessor computers”, J. Appl. Mech. Tech. Phy., 58:7 (2017), 1242–1259 | DOI

[9] A.S. Kozelkov, S.V. Lashkin, V.R. Efremov, K.N. Volkov, Yu.A. Tsibereva, N.V. Tarasova, “An implicit algorithm of solving Navier-Stokes equations to simulate flows in anisotropic porous media”, Comput. Fluids, 160 (2018), 164–174 | DOI | Zbl

[10] Z.J. Chen, A.J. Przekwas, “A coupled pressure-based computational method for incompressible/compressible flows”, J. Comput. Phys., 229:24 (2010), 9150–9165 | DOI | Zbl

[11] M. Cianferr, V. Armenio, S. Ianniello, “Hydroacoustic noise from different geometries”, Int. J. Heat Fluid flow, 70 (2018), 348–362 | DOI

[12] A. Inasawa, T. Nakano, M. Asai, “Development of wake vortices and the associated sound radiation in the flow past a rectangular cylinder of various aspect ratios”, 7th International Simposium on Turbulence and Shear Flow Phenomena (Ottava, Canada, July 27–31, 2011)

[13] A. Bodling, A. Sharm, “Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil”, Journal of Sound and Vibration, 453 (2019), 314–327 | DOI

[14] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI

[15] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, S.V. Lashkin, E.S. Tyatyushkina, “Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids”, Comput. Math. Math. Phys., 57:6 (2017), 1036–1047 | DOI | Zbl

[16] A.S. Kozelkov, V.V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows”, Comput. Math. Math. Phys., 55:7 (2015), 1232–1241 | DOI | Zbl

[17] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | Zbl

[18] A.S. Kozelkov, “The numerical technique for the landslide tsunami simulations based on Navier-Stokes equations”, J. Appl. Mech. Tech. Phy., 58:7 (2017), 1192–1210 | DOI

[19] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows, Thesis submitted for the degree of doctor, Department of Mechanical Engineering, Imperial College of Science, 1996

[20] K. Stüben, U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, Lect. Notes Math., 960, Springer, 1982 | Zbl

[21] Van Emden Henson, U. Meier-Yang, “Boomer AMG: A parallel algebraic multigrid solver and preconditioner”, Appl. Numer. Math., 41:1 (2002), 155–177 | DOI | Zbl

[22] K.N. Volkov, A.S. Kozelkov, S.V. Lashkin, N.V. Tarasova, A.V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Comput. Math. Math. Phys., 57:12 (2017), 2030–2046 | DOI | Zbl

[23] J.D. Fenton, “A fifth-order Stokes theory for steady waves”, Journal of Waterway Port Coastal and Ocean Engineering-asce, 111:2 (1985), 216–234 | DOI

[24] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 103:1 (1992), 16–42 | DOI | Zbl

[25] R. Jirik, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf, J. Jan, “Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59:2 (2012), 254–264 | DOI

[26] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231–248 | DOI

[27] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610–2620 | DOI

[28] M.V. Klibanov, “Travel time tomography with formally determined incomplete data in 3D”, Inverse Probl. Imaging, 13:6 (2019), 1367–1393 | DOI | Zbl

[29] M.V. Klibanov, “On the travel time tomography problem in 3D”, J. Inverse Ill-Posed Probl., 27:4 (2019), 591–607 | DOI | Zbl

[30] S.I. Kabanikhin, D.V. Klyuchinskiy, I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Direct and inverse problems for conservation laws”, Continuum mechanics, applied mathematics and scientific computing: Godunov's legacy, Springer, Cham, 2020, 217–222 | DOI | MR

[31] S.I. Kabanikhin, I.M. Kulikov, M.A. Shishlenin, “An algorithm for recovering the characteristics of the initial state of supernova”, Comput. Math. Math. Phys., 60:6 (2020), 1008–1016 | DOI | Zbl

[32] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287–297 | DOI | Zbl

[33] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient Descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 | DOI

[34] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 | DOI

[35] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations”, J. Physics: Conference Series, 1715:1 (2021), 012038 | DOI

[36] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Physics, 439 (2021), 110374 | DOI