Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a61, author = {N. A. Zadorin}, title = {Optimization of nodes of composite quadrature formulas in the presence of a boundary layer}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1201--1209}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/} }
TY - JOUR AU - N. A. Zadorin TI - Optimization of nodes of composite quadrature formulas in the presence of a boundary layer JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1201 EP - 1209 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/ LA - en ID - SEMR_2021_18_2_a61 ER -
%0 Journal Article %A N. A. Zadorin %T Optimization of nodes of composite quadrature formulas in the presence of a boundary layer %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1201-1209 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/ %G en %F SEMR_2021_18_2_a61
N. A. Zadorin. Optimization of nodes of composite quadrature formulas in the presence of a boundary layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1201-1209. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/
[1] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobel'kov, Numerical methods, Nauka, M., 1987 | Zbl
[2] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 | Zbl
[3] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Hackensack, 2012 | Zbl
[4] A.I. Zadorin, N.A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Comput. Math. Math. Phys., 51:11 (2011), 1837–1846 | Zbl
[5] T. Linss, “The necessity of Shishkin decompositions”, Appl. Math. Lett., 14:7 (2001), 891–896 | DOI | Zbl
[6] A.I. Zadorin, N.A. Zadorin, “Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component”, Comput. Math. Math. Phys., 56:3 (2016), 358–366 | DOI | Zbl
[7] R.B. Kellog, A. Tsan, “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | Zbl
[8] A.I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | Zbl
[9] A.I. Zadorin, “Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer”, Sib. Électron. Mat. Izv., 13 (2016), 101–110 | Zbl
[10] I.S. Berezin, N.P. Zhidkov, Computing methods, Pergamon, Oxford, 1965 | Zbl
[11] N.S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1971), 139–166 | DOI | Zbl
[12] T. Linss, Layer-adapted meshes for reaction-convection-diffusion problems, Springer, Berlin, 2010 | Zbl