Optimization of nodes of composite quadrature formulas in the presence of a boundary layer
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1201-1209.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of numerical integration of a function of one variable with large gradients in the region of the exponential boundary layer is studied. The problem is that the use of composite quadrature formulas on a uniform grid with decreasing of the small parameter value leads to significant errors, regardless of the number of nodes of the basic quadrature formula. In the paper it is proposed to choose nodes based on the composite quadrature formula error minimizing. Basic quadrature formula applied between grid nodes, takes into account the cases of the Newton-Cotes and Gauss formulas. It is proved that the minimum error is achieved on the Bakhvalov mesh, and the error of the quadrature formula becomes uniform in a small parameter.
Keywords: function of one variable, numerical integration, optimization of nodes
Mots-clés : large gradients, Newton-Cotes formula, Gauss formula, error estimation.
@article{SEMR_2021_18_2_a61,
     author = {N. A. Zadorin},
     title = {Optimization of nodes of composite quadrature formulas in the presence of a boundary layer},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1201--1209},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/}
}
TY  - JOUR
AU  - N. A. Zadorin
TI  - Optimization of nodes of composite quadrature formulas in the presence of a boundary layer
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1201
EP  - 1209
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/
LA  - en
ID  - SEMR_2021_18_2_a61
ER  - 
%0 Journal Article
%A N. A. Zadorin
%T Optimization of nodes of composite quadrature formulas in the presence of a boundary layer
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1201-1209
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/
%G en
%F SEMR_2021_18_2_a61
N. A. Zadorin. Optimization of nodes of composite quadrature formulas in the presence of a boundary layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1201-1209. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a61/

[1] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobel'kov, Numerical methods, Nauka, M., 1987 | Zbl

[2] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 | Zbl

[3] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Hackensack, 2012 | Zbl

[4] A.I. Zadorin, N.A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Comput. Math. Math. Phys., 51:11 (2011), 1837–1846 | Zbl

[5] T. Linss, “The necessity of Shishkin decompositions”, Appl. Math. Lett., 14:7 (2001), 891–896 | DOI | Zbl

[6] A.I. Zadorin, N.A. Zadorin, “Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component”, Comput. Math. Math. Phys., 56:3 (2016), 358–366 | DOI | Zbl

[7] R.B. Kellog, A. Tsan, “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | Zbl

[8] A.I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | Zbl

[9] A.I. Zadorin, “Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer”, Sib. Électron. Mat. Izv., 13 (2016), 101–110 | Zbl

[10] I.S. Berezin, N.P. Zhidkov, Computing methods, Pergamon, Oxford, 1965 | Zbl

[11] N.S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1971), 139–166 | DOI | Zbl

[12] T. Linss, Layer-adapted meshes for reaction-convection-diffusion problems, Springer, Berlin, 2010 | Zbl