On read-once multifunctions in some base
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1098-1104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multifunctions that can be realized by read-once formulas in some finite base are studied. An algorithm for finding read-once representations of multifunctions in this base is obtained using the decomposition method of multifunctions.
Keywords: multifunction, many-valued logic, base, read-once formula.
Mots-clés : superposition, decomposition
@article{SEMR_2021_18_2_a6,
     author = {I. K. Sharankhaev},
     title = {On read-once multifunctions in some base},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1098--1104},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/}
}
TY  - JOUR
AU  - I. K. Sharankhaev
TI  - On read-once multifunctions in some base
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1098
EP  - 1104
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/
LA  - ru
ID  - SEMR_2021_18_2_a6
ER  - 
%0 Journal Article
%A I. K. Sharankhaev
%T On read-once multifunctions in some base
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1098-1104
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/
%G ru
%F SEMR_2021_18_2_a6
I. K. Sharankhaev. On read-once multifunctions in some base. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1098-1104. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/

[1] F. Börner, “Total multifunctions and relations”, Contrib. Gen. Algebra, 13 (2001), 23–36 | Zbl

[2] S.A. Badmaev, “A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2”, Sib. Élektron. Mat. Izv., 15 (2018), 450–474 | Zbl

[3] S.A. Badmaev, I.K. Sharankhaev, “On minimal bases in full partial ultraclone of rank 2”, Sib. Élektron. Mat. Izv., 17 (2020), 1478–1487 | DOI | Zbl

[4] V.V. Tarasov, “Completeness criterion for undefined functions of Boolean algebra”, Probl. Kibern., 30 (1975), 319–325 | Zbl

[5] I.K. Sharankhaev, “On decomposition of sub-definite partial Boolean functions”, J. Sib. Fed. Univ., Math. Phys., 9:1 (2016), 119–122 | DOI | Zbl

[6] G.N. Povarov, “On functional separability of Boolean functions”, Dokl. Akad. Nauk USSR, 94:5 (1954), 801–803 | Zbl

[7] S.F. Vinokurov, N.A. Peryazev (eds.), Selected problems in the theory of Boolean functions, Fizmatlit, M., 2001 | Zbl

[8] V.L. Semicheva, Methods of finding of repetition-free representations of incompletely defined Boolean functions, Dissertation of Candidate in Physics and Mathematics, Irkutsk, 2008