Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a6, author = {I. K. Sharankhaev}, title = {On read-once multifunctions in some base}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1098--1104}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/} }
I. K. Sharankhaev. On read-once multifunctions in some base. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1098-1104. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a6/
[1] F. Börner, “Total multifunctions and relations”, Contrib. Gen. Algebra, 13 (2001), 23–36 | Zbl
[2] S.A. Badmaev, “A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2”, Sib. Élektron. Mat. Izv., 15 (2018), 450–474 | Zbl
[3] S.A. Badmaev, I.K. Sharankhaev, “On minimal bases in full partial ultraclone of rank 2”, Sib. Élektron. Mat. Izv., 17 (2020), 1478–1487 | DOI | Zbl
[4] V.V. Tarasov, “Completeness criterion for undefined functions of Boolean algebra”, Probl. Kibern., 30 (1975), 319–325 | Zbl
[5] I.K. Sharankhaev, “On decomposition of sub-definite partial Boolean functions”, J. Sib. Fed. Univ., Math. Phys., 9:1 (2016), 119–122 | DOI | Zbl
[6] G.N. Povarov, “On functional separability of Boolean functions”, Dokl. Akad. Nauk USSR, 94:5 (1954), 801–803 | Zbl
[7] S.F. Vinokurov, N.A. Peryazev (eds.), Selected problems in the theory of Boolean functions, Fizmatlit, M., 2001 | Zbl
[8] V.L. Semicheva, Methods of finding of repetition-free representations of incompletely defined Boolean functions, Dissertation of Candidate in Physics and Mathematics, Irkutsk, 2008