Operator-orthoregressive methods for identifying coefficients of linear difference equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 792-804.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new family of operator-orthoregressive methods for identifying the coefficients of linear difference equations from measurements of noisy solution at short time intervals. This family includes special cases of orthogonal regression (TLS) and variational identification (STLS) methods. The conditions of identifiability, as well as quantitative indicators of local identifiability, based on the numerical characteristics of the ellipsoids of deviations of the identified coefficients at small disturbances in measurements, are obtained. Computational algorithms are mentioned.
Keywords: linear difference equations, parameter identification, algebraic Fliess method, operator-orthoregressive method, variational identification method, quantitative local identifiability indicators, Prony problem.
Mots-clés : orthogonal regression method
@article{SEMR_2021_18_2_a56,
     author = {A. A. Lomov},
     title = {Operator-orthoregressive methods for identifying coefficients of linear difference equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {792--804},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - Operator-orthoregressive methods for identifying coefficients of linear difference equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 792
EP  - 804
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/
LA  - en
ID  - SEMR_2021_18_2_a56
ER  - 
%0 Journal Article
%A A. A. Lomov
%T Operator-orthoregressive methods for identifying coefficients of linear difference equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 792-804
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/
%G en
%F SEMR_2021_18_2_a56
A. A. Lomov. Operator-orthoregressive methods for identifying coefficients of linear difference equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 792-804. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/

[1] K. Pearson, “On lines and planes of closest fit to systems of points in space”, Phil. Mag., 6:2 (1901), 559–572 | DOI | Zbl

[2] H. Cramer, “Orthogonal mean square regression”, Mathematical methods of statistics, Ch. 23.6, Asia Publishing House, Bombay, NY, 1962; Princeton, 1946 | Zbl

[3] G.H. Golub, C.F. Van Loan, “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17 (1980), 883–893 | DOI | Zbl

[4] A.O. Egorshin, “Least squares method and the «fast» algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1988:1 (1988), 30–41 (in Russian)

[5] A.A. Lomov, “Variation identification methods linear dynamic and the problem of local extremes”, Large-scale Systems Control, 39 (2012), 53–94 (in Russian)

[6] Y.M. Bosinzon, I.Y. Falkovskii, “On a method for estimating parameters of time dependences through experimental data”, Autom. Remote Control, 55:4 (1994), 502–505 | Zbl

[7] S.N. Rogov, L.G. Sobolev, O.V. Khrutskii, “On some methods of smoothing and identification of experimental trends”, Autom. Remote Control, 66:5 (2005), 799–809 | DOI | Zbl

[8] B.O. Kachanov, “Symmetric Laplace transform and its application to parametric identification of linear systems”, Autom. Remote Control, 70:8 (2009), 1309–1316 | DOI | Zbl

[9] M. Fliess, H. Sira-Ramirez, “An algebraic framework for linear identification”, ESAIM, Control Optim. Calc. Var., 9 (2003), 151–168 | DOI | Zbl

[10] R. Ushirobira, W. Perruquetti, M. Mboup, M. Fliess, “Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data”, 16th IFAC Symposium on System Identification (The International Federation of Automatic Control, Brussels, Belgium, 2012), 167–172

[11] A.A. Lomov, “Operator-orthoregressive method for identifying coefficients of linear differential equations”, J. Math. Sci., 253:3 (2021), 391–406 | DOI

[12] A.A. Lomov, “On quantitative a priori measures of identifiability of coefficients of linear dynamic systems”, J. Comput. Syst. Sci. Int., 50:1 (2011), 1–13 | DOI | Zbl

[13] I. Markovsky, S. van Huffel, “Overview of total least-squares methods”, Signal Process., 87:10 (2007), 2283–2302 | DOI | Zbl

[14] B. De Moor, “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–205 | DOI | Zbl

[15] A.A. Lomov, “On consistency of a generalized orthoregressive parameter estimator for a linear dynamical system”, J. Appl. Ind. Mat., 8:1 (2014), 86–91 | DOI | Zbl

[16] A.A. Lomov, “On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations”, J. Appl. Industr. Math., 14:3 (2020), 541–554 | DOI

[17] A.S. Householder, On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Oak Ridge, Tennessee, 1950 | Zbl

[18] M.S. Mackisack, M.R. Osborne, G.K. Smyth, “A modified Prony algorithm for estimating sinusoidal frequencies”, J. Stat. Comput. Simulation, 49:1–2 (1994), 111–124 | DOI | Zbl

[19] I.G. Zedgenidze, Designing an experiment to study multicomponent systems, Nauka, M., 1976

[20] A.A. Lomov, “Local stability in the problem of identifying coefficients of a linear difference equation”, J. Math. Sci., 188:4 (2013), 410–434 | DOI | Zbl