Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a56, author = {A. A. Lomov}, title = {Operator-orthoregressive methods for identifying coefficients of linear difference equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {792--804}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/} }
TY - JOUR AU - A. A. Lomov TI - Operator-orthoregressive methods for identifying coefficients of linear difference equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 792 EP - 804 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/ LA - en ID - SEMR_2021_18_2_a56 ER -
%0 Journal Article %A A. A. Lomov %T Operator-orthoregressive methods for identifying coefficients of linear difference equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 792-804 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/ %G en %F SEMR_2021_18_2_a56
A. A. Lomov. Operator-orthoregressive methods for identifying coefficients of linear difference equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 792-804. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a56/
[1] K. Pearson, “On lines and planes of closest fit to systems of points in space”, Phil. Mag., 6:2 (1901), 559–572 | DOI | Zbl
[2] H. Cramer, “Orthogonal mean square regression”, Mathematical methods of statistics, Ch. 23.6, Asia Publishing House, Bombay, NY, 1962; Princeton, 1946 | Zbl
[3] G.H. Golub, C.F. Van Loan, “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17 (1980), 883–893 | DOI | Zbl
[4] A.O. Egorshin, “Least squares method and the «fast» algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1988:1 (1988), 30–41 (in Russian)
[5] A.A. Lomov, “Variation identification methods linear dynamic and the problem of local extremes”, Large-scale Systems Control, 39 (2012), 53–94 (in Russian)
[6] Y.M. Bosinzon, I.Y. Falkovskii, “On a method for estimating parameters of time dependences through experimental data”, Autom. Remote Control, 55:4 (1994), 502–505 | Zbl
[7] S.N. Rogov, L.G. Sobolev, O.V. Khrutskii, “On some methods of smoothing and identification of experimental trends”, Autom. Remote Control, 66:5 (2005), 799–809 | DOI | Zbl
[8] B.O. Kachanov, “Symmetric Laplace transform and its application to parametric identification of linear systems”, Autom. Remote Control, 70:8 (2009), 1309–1316 | DOI | Zbl
[9] M. Fliess, H. Sira-Ramirez, “An algebraic framework for linear identification”, ESAIM, Control Optim. Calc. Var., 9 (2003), 151–168 | DOI | Zbl
[10] R. Ushirobira, W. Perruquetti, M. Mboup, M. Fliess, “Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data”, 16th IFAC Symposium on System Identification (The International Federation of Automatic Control, Brussels, Belgium, 2012), 167–172
[11] A.A. Lomov, “Operator-orthoregressive method for identifying coefficients of linear differential equations”, J. Math. Sci., 253:3 (2021), 391–406 | DOI
[12] A.A. Lomov, “On quantitative a priori measures of identifiability of coefficients of linear dynamic systems”, J. Comput. Syst. Sci. Int., 50:1 (2011), 1–13 | DOI | Zbl
[13] I. Markovsky, S. van Huffel, “Overview of total least-squares methods”, Signal Process., 87:10 (2007), 2283–2302 | DOI | Zbl
[14] B. De Moor, “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–205 | DOI | Zbl
[15] A.A. Lomov, “On consistency of a generalized orthoregressive parameter estimator for a linear dynamical system”, J. Appl. Ind. Mat., 8:1 (2014), 86–91 | DOI | Zbl
[16] A.A. Lomov, “On convergence of computational algorithms for a variational problem of identifying the coefficients of difference equations”, J. Appl. Industr. Math., 14:3 (2020), 541–554 | DOI
[17] A.S. Householder, On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Oak Ridge, Tennessee, 1950 | Zbl
[18] M.S. Mackisack, M.R. Osborne, G.K. Smyth, “A modified Prony algorithm for estimating sinusoidal frequencies”, J. Stat. Comput. Simulation, 49:1–2 (1994), 111–124 | DOI | Zbl
[19] I.G. Zedgenidze, Designing an experiment to study multicomponent systems, Nauka, M., 1976
[20] A.A. Lomov, “Local stability in the problem of identifying coefficients of a linear difference equation”, J. Math. Sci., 188:4 (2013), 410–434 | DOI | Zbl