Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1639-1650.

Voir la notice de l'article provenant de la source Math-Net.Ru

The gas dynamics equations with pressure being of the sum of density and entropy functions are considered. The admissible group of transformations is expanded due to the pressure translation. The Lie algebra corresponding to the group is 12-dimensional. Invariant submodels of rank 1 generated by 3-dimensional 4-parameter subalgebras consisting of all translations in space and pressure translation are constructed. Three families of exact solutions are found which describe the motion of particles with a linear velocity field with inhomogeneous deformation. The moment of time of the presence or absence of collapse of particles for each family of solutions are found. In a particular case, the trajectories of particles motion are constructed. The volume of particles at the initial moment of time restricted by the sphere is isolated. It is proved that at any other time moments the volume turns into an ellipsoid and the particles volume value does not change with time.
Keywords: gas dynamics equations, equation of state, invariant submodel, linear velocity field.
Mots-clés : admissible subalgebra, exact solution
@article{SEMR_2021_18_2_a53,
     author = {D. T. Siraeva},
     title = {Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1639--1650},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/}
}
TY  - JOUR
AU  - D. T. Siraeva
TI  - Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1639
EP  - 1650
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/
LA  - en
ID  - SEMR_2021_18_2_a53
ER  - 
%0 Journal Article
%A D. T. Siraeva
%T Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1639-1650
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/
%G en
%F SEMR_2021_18_2_a53
D. T. Siraeva. Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1639-1650. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/

[1] L.V. Ovsyannikov, “The “PODMODELI” program. Gas dynamics”, J. Appl. Math. Mech., 58:4 (1994), 601–627 | DOI | MR | Zbl

[2] S.V. Khabirov, “Nonisomorphic Lie algebras admitted by gas dynamic models”, Ufim. Mat. Zh., 3:2 (2011), 87–90 | MR | Zbl

[3] S.V. Khabirov, “Optimal system for sum of two ideals admitted by hydrodynamic type equations”, Ufim. Mat. Zh., 6:2 (2014), 94–103 | MR | Zbl

[4] Yu.A. Chirkunov, S.V. Khabirov, Elements of symmetry analysis of differential equations of continuum mechanics, NSTU, Novosibirsk, 2012

[5] S.V. Khabirov, Lectures analytical methods in gas dynamics, BSU, Ufa, 2013

[6] E.V. Mamontov, “Invariant submodels of rank two to the equations of gas dynamics”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 232–237 | DOI | MR | Zbl

[7] E.V. Mamontov, “Group properties of 2-submodels for the stationary class of gas-dynamic equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 72–84 | Zbl

[8] D.T. Siraeva, “Optimal system of non-similar subalgebras of sum of two ideals”, Ufim. Mat. Zh., 6:1 (2014), 94–107 | MR | Zbl

[9] D.T. Siraeva, “Reduction of partially invariant submodels of rank 3 of defect 1 to invariant submodels”, Multiphase Systems, 13:3 (2018), 59–63 | DOI

[10] D.T. Siraeva, “Classification of rank 2 stationary submodels of ideal hydrodynamics”, Chelyabinskii Fiz.-Mat. Zh., 4:1 (2019), 18–32 | MR | Zbl

[11] D.T. Siraeva, “The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics”, J. Appl. Ind. Math., 13:2 (2019), 340–349 | DOI | MR | Zbl

[12] D.T. Siraeva, S.V. Khabirov, “Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model”, Chelyabinskii Fiz.-Mat. Zh., 3:1 (2018), 38–57 | MR | Zbl

[13] D.T. Siraeva, “Two invariant submodels of rank 1 of the hydrodynamic type equations and exact solutions”, J. Phys.: Conf. Ser., 1666 (2020), 012049 | DOI

[14] E.V. Makarevich, “Invariant and partially invariant solutions with respect to Galilean shifts and dilatation”, Ufim. Mat. Zh., 5:3 (2013), 121–129 | MR | Zbl

[15] E.V. Makarevich, “Gasdynamics equations submodels hierarchy in case of state equation with separated density”, Sib. Èlektron. Mat. Izv., 9 (2012), 306–328 | MR | Zbl

[16] A.A. Cherevko, “Group-theoretical solutions to gas dynamic equations generated by three-dimensional Lie subalgebras”, Sib. Èlektron. Mat. Izv., 4 (2007), 553–595 | MR | Zbl

[17] A.I. Golod, A.P. Chupakhin, “Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry”, Sib. Èlektron. Mat. Izv., 5 (2008), 229–250 | MR | Zbl

[18] E.V. Mamontov, “Invariant solutions to the dynamic of polytropic gas generated by a three-dimensional Lie subalgebras”, Sib. Èlektron. Mat. Izv., 6 (2009), 53–109 | MR | Zbl

[19] L.Z. Urazbakhtina, “Invariant submodels of the rank one of gas dynamics with special state equation”, Ufim. Mat. Zh., 1:3 (2009), 139–153 | Zbl

[20] R.F. Nikonorova, “The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras”, Sib. Èlektron. Mat. Izv., 15 (2018), 1216–1226 | MR | Zbl

[21] R.F. Shayakhmetova, “Vortex scattering of monatomic gas along plane curves”, J. Appl. Mech. Tech. Phys., 59:2 (2018), 241–250 | DOI | MR | Zbl

[22] Yu.V. Tarasova, “Classification of submodels with a linear velocity field in gas dynamics”, J. Appl. Ind. Math., 4:4 (2010), 570–577 | DOI | MR | Zbl

[23] L.V. Ovsyannikov, Group analysis of differential equations, Academic press, New York etc, 1982 | MR | Zbl

[24] L.V. Ovsyannikov, Lectures on the fundamentals of gas dynamics, Institut komp'yuternykh issledovaniy, M.–Izhevsk, 2003 | MR

[25] I.N. Bronshtein, K.A. Semendyayev, A guide-book to mathematics for technologists and engineers, Pergamon Press, Oxford etc, 1964 | MR | Zbl