Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a53, author = {D. T. Siraeva}, title = {Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1639--1650}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/} }
TY - JOUR AU - D. T. Siraeva TI - Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1639 EP - 1650 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/ LA - en ID - SEMR_2021_18_2_a53 ER -
%0 Journal Article %A D. T. Siraeva %T Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1639-1650 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/ %G en %F SEMR_2021_18_2_a53
D. T. Siraeva. Invariant solutions of the gas dynamics equations from 4-parameter three-dimensional subalgebras containing all translations in space and pressure translation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1639-1650. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a53/
[1] L.V. Ovsyannikov, “The “PODMODELI” program. Gas dynamics”, J. Appl. Math. Mech., 58:4 (1994), 601–627 | DOI | MR | Zbl
[2] S.V. Khabirov, “Nonisomorphic Lie algebras admitted by gas dynamic models”, Ufim. Mat. Zh., 3:2 (2011), 87–90 | MR | Zbl
[3] S.V. Khabirov, “Optimal system for sum of two ideals admitted by hydrodynamic type equations”, Ufim. Mat. Zh., 6:2 (2014), 94–103 | MR | Zbl
[4] Yu.A. Chirkunov, S.V. Khabirov, Elements of symmetry analysis of differential equations of continuum mechanics, NSTU, Novosibirsk, 2012
[5] S.V. Khabirov, Lectures analytical methods in gas dynamics, BSU, Ufa, 2013
[6] E.V. Mamontov, “Invariant submodels of rank two to the equations of gas dynamics”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 232–237 | DOI | MR | Zbl
[7] E.V. Mamontov, “Group properties of 2-submodels for the stationary class of gas-dynamic equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 72–84 | Zbl
[8] D.T. Siraeva, “Optimal system of non-similar subalgebras of sum of two ideals”, Ufim. Mat. Zh., 6:1 (2014), 94–107 | MR | Zbl
[9] D.T. Siraeva, “Reduction of partially invariant submodels of rank 3 of defect 1 to invariant submodels”, Multiphase Systems, 13:3 (2018), 59–63 | DOI
[10] D.T. Siraeva, “Classification of rank 2 stationary submodels of ideal hydrodynamics”, Chelyabinskii Fiz.-Mat. Zh., 4:1 (2019), 18–32 | MR | Zbl
[11] D.T. Siraeva, “The canonical form of the rank 2 invariant submodels of evolutionary type in ideal hydrodynamics”, J. Appl. Ind. Math., 13:2 (2019), 340–349 | DOI | MR | Zbl
[12] D.T. Siraeva, S.V. Khabirov, “Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model”, Chelyabinskii Fiz.-Mat. Zh., 3:1 (2018), 38–57 | MR | Zbl
[13] D.T. Siraeva, “Two invariant submodels of rank 1 of the hydrodynamic type equations and exact solutions”, J. Phys.: Conf. Ser., 1666 (2020), 012049 | DOI
[14] E.V. Makarevich, “Invariant and partially invariant solutions with respect to Galilean shifts and dilatation”, Ufim. Mat. Zh., 5:3 (2013), 121–129 | MR | Zbl
[15] E.V. Makarevich, “Gasdynamics equations submodels hierarchy in case of state equation with separated density”, Sib. Èlektron. Mat. Izv., 9 (2012), 306–328 | MR | Zbl
[16] A.A. Cherevko, “Group-theoretical solutions to gas dynamic equations generated by three-dimensional Lie subalgebras”, Sib. Èlektron. Mat. Izv., 4 (2007), 553–595 | MR | Zbl
[17] A.I. Golod, A.P. Chupakhin, “Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry”, Sib. Èlektron. Mat. Izv., 5 (2008), 229–250 | MR | Zbl
[18] E.V. Mamontov, “Invariant solutions to the dynamic of polytropic gas generated by a three-dimensional Lie subalgebras”, Sib. Èlektron. Mat. Izv., 6 (2009), 53–109 | MR | Zbl
[19] L.Z. Urazbakhtina, “Invariant submodels of the rank one of gas dynamics with special state equation”, Ufim. Mat. Zh., 1:3 (2009), 139–153 | Zbl
[20] R.F. Nikonorova, “The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras”, Sib. Èlektron. Mat. Izv., 15 (2018), 1216–1226 | MR | Zbl
[21] R.F. Shayakhmetova, “Vortex scattering of monatomic gas along plane curves”, J. Appl. Mech. Tech. Phys., 59:2 (2018), 241–250 | DOI | MR | Zbl
[22] Yu.V. Tarasova, “Classification of submodels with a linear velocity field in gas dynamics”, J. Appl. Ind. Math., 4:4 (2010), 570–577 | DOI | MR | Zbl
[23] L.V. Ovsyannikov, Group analysis of differential equations, Academic press, New York etc, 1982 | MR | Zbl
[24] L.V. Ovsyannikov, Lectures on the fundamentals of gas dynamics, Institut komp'yuternykh issledovaniy, M.–Izhevsk, 2003 | MR
[25] I.N. Bronshtein, K.A. Semendyayev, A guide-book to mathematics for technologists and engineers, Pergamon Press, Oxford etc, 1964 | MR | Zbl