Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1596-1614

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show some results about the existence and uniqueness of the positive solution for a $p$-Laplacian fractional differential equations with fractional derivative boundary condition. Our results are based on Krasnosel'skii's fixed point theorem, the nonlinear alternative of Leray-Schauder type and contraction mapping principle. Three examples are given to illustrate the applicability of our main results.
Keywords: Caputo fractional differential equations, $p$-Laplacian operator, fixed-point theorem, cone.
Mots-clés : positive solutions, existence
@article{SEMR_2021_18_2_a52,
     author = {F. Haddouchi},
     title = {Positive solutions of $p${-Laplacian} fractional differential equations with fractional derivative boundary condition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1596--1614},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/}
}
TY  - JOUR
AU  - F. Haddouchi
TI  - Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1596
EP  - 1614
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/
LA  - en
ID  - SEMR_2021_18_2_a52
ER  - 
%0 Journal Article
%A F. Haddouchi
%T Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1596-1614
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/
%G en
%F SEMR_2021_18_2_a52
F. Haddouchi. Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1596-1614. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/