Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a52, author = {F. Haddouchi}, title = {Positive solutions of $p${-Laplacian} fractional differential equations with fractional derivative boundary condition}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1596--1614}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/} }
TY - JOUR AU - F. Haddouchi TI - Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1596 EP - 1614 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/ LA - en ID - SEMR_2021_18_2_a52 ER -
%0 Journal Article %A F. Haddouchi %T Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1596-1614 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/ %G en %F SEMR_2021_18_2_a52
F. Haddouchi. Positive solutions of $p$-Laplacian fractional differential equations with fractional derivative boundary condition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1596-1614. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a52/
[1] L.E. Bobisud, “Steady-state turbulent flow with reaction”, Rocky Mt. J. Math., 21:3 (1991), 993–1007 | DOI | MR | Zbl
[2] T. Chen, W. Liu, “An anti-periodic boundary value problem for the fractional differential equation with a $p$-Laplacian operator”, Appl. Math. Lett., 25:11 (2012), 1671–1675 | DOI | MR | Zbl
[3] L. Cheng, W. Liu, Q. Ye, “Boundary value problem for a coupled system of fractional differential equations with $p$-Laplacian operator at resonance”, Electron. J. Differ. Equ., 2014 (2014), 60 | DOI | MR | Zbl
[4] A. Granas, J. Dugundji, Fixed point theory, Springer Monographs in Mathematics, Springer, New York, 2003 | DOI | MR | Zbl
[5] H. Wang, S. Liu, H. Li, “Positive solutions to $p$-Laplacian fractional differential equations with infinite-point boundary value conditions”, Adv. Difference Equ., 2018 (2018), 425 | DOI | MR | Zbl
[6] Hongling Lu, Zhenlai Han Zhenlai, Shurong Sun, “Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations with $p$-Laplacian”, Bound. Value Probl., 2014 (2014), 26 | DOI | MR | Zbl
[7] Z. Hu, W. Liu, J. Liu, “Existence of solutions of fractional differential equation with $p$-Laplacian operator at resonance”, Abstr. Appl. Anal., 2014 (2014), 809637 | MR | Zbl
[8] L. Hu, S. Zhang, “Existence results for a coupled system of fractional differential equations with $p$-Laplacian operator and infinite-point boundary conditions”, Bound. Value Probl., 2017 (2017), 88 | DOI | MR | Zbl
[9] H. Khan, W. Chen, H. Sun, “Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with $p$-Laplacian in Banach space”, Math. Methods Appl. Sci., 41:9 (2018), 3430–3440 | DOI | MR | Zbl
[10] A. Khan, Y. Li, K. Shah, T.S. Khan, “On coupled $p$-Laplacian fractional differential equations with nonlinear boundary conditions”, Complexity, 2017 (2017), 8197610 | DOI | MR | Zbl
[11] H. Khan, Y. Li, H. Sun, A. Khan, “Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with $p$-Laplacian operator”, J. Nonlinear Sci. Appl., 10:10 (2017), 5219–5229 | DOI | MR | Zbl
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[13] M.A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff, Groningen, 1964 | MR | Zbl
[14] Li Zhang, Fanglei Wang, Yuanfang Ru, “Existence of nontrivial solutions for fractional differential equations with $p$-Laplacian”, J. Funct. Spaces, 2019 (2019), 3486410 | MR | Zbl
[15] Z. Liu, L. Lu, “A class of BVPs for nonlinear fractional differential equations with $p$-Laplacian operator”, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 70 | DOI | MR | Zbl
[16] R. Luca, “Positive solutions for a system of fractional differential equations with $p$-Laplacian operator and multi-point boundary conditions”, Nonlinear Anal., Model. Control., 23:5 (2018), 771–801 | DOI | MR | Zbl
[17] N.I Mahmudov, S. Unul, “Existence of solutions of fractional boundary value problems with $p$-Laplacian operator”, Bound. Value Probl., 2015 (2015), 99 | DOI | MR | Zbl
[18] K. Perera, M. Squassina, Y. Yang, “A note on the Dancer-Fučík spectra of the fractional $p$-Laplacian and Laplacian operators”, Adv. Nonlinear Anal., 4:1 (2015), 13–23 | DOI | MR | Zbl
[19] K. Perera, M. Squassina, Y. Yang, “Bifurcation and multiplicity results for critical fractional $p$-Laplacian problems”, Math. Nachr., 289:2–3 (2016), 332–342 | DOI | MR | Zbl
[20] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999 | MR | Zbl
[21] K.R. Prasad, B.M.B. Krushna, “Multiple positive solutions for a coupled system of $p$-Laplacian fractional order two-point boundary value problems”, Int. J. Differ. Equ., 2014 (2014), 485647 | MR | Zbl
[22] P. Pucci, M. Xiang, B. Zhang, “Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations”, Adv. Nonlinear Anal., 5:1 (2016), 27–55 | MR | Zbl
[23] T. Shen, W. Liu, X. Shen, “Existence and uniqueness of solutions for several BVPs of fractional differential equations with $p$-Laplacian operator”, Mediterr. J. Math., 13:6 (2016), 4623–4637 | DOI | MR | Zbl
[24] J. Tan, M. Li, “Solutions of fractional differential equations with $p$-Laplacian operator in Banach spaces”, Bound. Value Probl., 2018 (2018), 15 | DOI | MR | Zbl
[25] J. Wang, H. Xiang, “Upper and lower solutions method for a class of singular fractional boundary value problems with $p$-Laplacian operator”, Abstr. Appl. Anal., 2010 (2010), 971824 | MR | Zbl
[26] X. Tang, X. Wang, Z. Wang, P. Ouyang, “The existence of solutions for mixed fractional resonant boundary value problem with $p(t)$-Laplacian operator”, J. Appl. Math. Comput., 61:1–2 (2019), 559–572 | DOI | MR | Zbl
[27] X. Liu, M. Jia, W. Ge, “The method of lower and upper solutions for mixed fractional four-point boundary value problem with $p$-Laplacian operator”, Appl. Math. Lett., 65 (2017), 56–62 | DOI | MR | Zbl
[28] C. Yang, J. Yan, “Positive solutions for third-order Sturm-Liouville boundary value problems with $p$-Laplacian”, Comput. Math. Appl., 59:6 (2010), 2059–2066 | DOI | MR | Zbl
[29] Y. Su, Q. Li, Xi-Lan Liu, “Existence criteria for positive solutions of $p$-Laplacian fractional differential equations with derivative terms”, Adv. Difference Equ., 2013 (2013), 119 | DOI | MR | Zbl
[30] Y. Tian, S. Sun, Z. Bai, “Positive solutions of fractional differential equations with $p$-Laplacian”, J. Funct. Spaces, 2017 (2017), 3187492 | MR | Zbl
[31] Y. Li, “Existence of positive solutions for fractional differential equation involving integral boundary conditions with $p$-Laplacian operator”, Adv. Difference Equ., 2017 (2017), 135 | DOI | MR | Zbl
[32] Y. Wang, S. Liu, Z. Han, “Eigenvalue problems for fractional differential equations with mixed derivatives and generalized $p$-Laplacian”, Nonlinear Anal. Model. Control., 23:6 (2018), 830–850 | DOI | MR | Zbl
[33] Z. Han, H. Lu, C. Zhang, “Positive solutions for eigenvalue problems of fractional differential equation with generalized $p$-Laplacian”, Appl. Math. Comput., 257 (2015), 526–536 | MR | Zbl