Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a5, author = {N. Bazhenov}, title = {HKSS-completeness of modal algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {923--930}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a5/} }
N. Bazhenov. HKSS-completeness of modal algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 923-930. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a5/
[1] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl
[2] A. Montalbán, “Computability theoretic classifications for classes of structures”, Proceedings of the International Congress of Mathematicians (Seoul, 2014), v. II, eds. S. Y. Jang, Y. R. Kim, D.-W. Lee, I. Yie, Kyung Moon Sa, Seoul, 2014, 79–101 | MR | Zbl
[3] M. Harrison-Trainor, A. Melnikov, R. Miller, A. Montalbán, “Computable functors and effective interpretability”, J. Symb. Log., 82:1 (2017), 77–97 | DOI | MR | Zbl
[4] R. Miller, B. Poonen, H. Schoutens, A. Shlapentokh, “A computable functor from graphs to fields”, J. Symb. Log., 83:1 (2018), 326–348 | DOI | MR | Zbl
[5] N. T. Kogabaev, “The theory of projective planes is complete with respect to degree spectra and effective dimensions”, Algebra Logic, 54:5 (2015), 387–407 | DOI | MR | Zbl
[6] D. A. Tussupov, “Isomorphisms and algorithmic properties of structures with two equivalences”, Algebra Logic, 55:1 (2016), 50–57 | DOI | MR | Zbl
[7] M. I. Marchuk, “Index set of structures with two equivalence relations that are autostable relative to strong constructivizations”, Algebra Logic, 55:4 (2016), 306–314 | DOI | MR | Zbl
[8] N. Bazhenov, “Computable contact algebras”, Fundam. Inform., 167:4 (2019), 257–269 | DOI | MR | Zbl
[9] S. S. Goncharov, V. D. Dzgoev, “Autostability of models”, Algebra Logic, 19:1 (1980), 28–37 | DOI | MR | Zbl
[10] B. Khoussainov, T. Kowalski, “Computable isomorphisms of Boolean algebras with operators”, Stud. Log., 100:3 (2012), 481–496 | DOI | MR | Zbl
[11] N. Bazhenov, “Categoricity spectra for polymodal algebras”, Stud. Log., 104:6 (2016), 1083–1097 | DOI | MR | Zbl
[12] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl
[13] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier Science B. V., Amsterdam, 2000 | MR | Zbl
[14] Yu. L. Ershov, S. S. Goncharov, Constructive models, Consultants Bureau, New York, 2000 | MR | Zbl
[15] J. F. Knight, “Degrees coded in jumps of orderings”, J. Symb. Log., 51:4 (1986), 1034–1042 | DOI | Zbl
[16] M. Kracht, F. Wolter, “Normal monomodal logics can simulate all others”, J. Symb. Log., 64:1 (1999), 99–138 | DOI | MR | Zbl
[17] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, D. D. Turetsky, “The complexity of computable categoricity”, Adv. Math., 268 (2015), 423–466 | DOI | MR | Zbl