Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 931-950.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of one-dimensional unsteady motion of a heat-conducting viscous compressible multifluid (mixture of perfect gases) on a bounded interval is considered, and the viscosity matrix is not assumed to be diagonal. The first step is made in proving the solvability of this problem: the local solvability of the approximate problem (for the Galerkin approximations) is shown.
Keywords: multicomponent viscous perfect gas, existence theorem, Galerkin method.
@article{SEMR_2021_18_2_a46,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {931--950},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a46/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 931
EP  - 950
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a46/
LA  - ru
ID  - SEMR_2021_18_2_a46
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 931-950
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a46/
%G ru
%F SEMR_2021_18_2_a46
A. E. Mamontov; D. A. Prokudin. Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 931-950. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a46/

[1] A.V. Kazhikhov, “The global solvability of one-dimensional boundary value problems for the equations of a viscous heat-conducting gas”, Din. Splosh. Sredy, 24 (1976), 45–61 | MR

[2] A.V. Kazhikhov, V.V. Shelukhin, “Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas”, J. Appl. Math. Mech., 41:2 (1977), 273–282 | DOI | MR

[3] A.V. Kazhikhov, “On the theory of boundary value problems for the equations of one-dimensional nonstationary motion of viscous heat-conducting gas”, Din. Splosh. Sredy, 50 (1981), 37–62 | Zbl

[4] S. Ya. Belov, “On the flow problem for the system of equations of the one-dimensional motion of viscous heat conducting gas”, Din. Splosh. Sredy, 56 (1982), 22–43 | Zbl

[5] A.A. Amosov, A.A. Zlotnik, “Generalized solutions “in the large” of the equations of the one-dimensional motion of a viscous heat-conducting gas”, Soviet Math. Dokl., 38:1 (1989), 1–5 | MR

[6] V.A. Veigant, “Nonhomogeneous boundary value problems for the equation of a viscous heat-conducting gas”, Din. Splosh. Sredy, 97 (1990), 3–21 | Zbl

[7] V.A. Veigant, “Stabilization of solutions of an inhomogeneous boundary value problem for the equations of a viscous heat-conducting gas”, Din. Splosh. Sredy, 101 (1991), 31–52

[8] A.A. Amosov, A.A. Zlotnik, “Solvability “in the large” of a system of equations of the one-dimensional motion of an inhomogeneous viscous heat-conducting gas”, Math. Notes, 52:2 (1992), 753–763 | DOI | Zbl

[9] A.A. Amosov, A.A. Zlotnik, “Semidiscrete method for solving equations of a one-dimensional motion of viscous heat-conductive gas with non-smooth data”, Russ. Math., 41:4 (1997), 1–17 | Zbl

[10] A.A. Amosov, A.A. Zlotnik, “Justification of quasi-averaging of equations of one-dimensional motion of a viscous heat-conducting gas with rapidly oscillating properties”, Dokl. Math., 55:3 (1997), 381–384 | Zbl

[11] A.A. Amosov, A.A. Zlotnik, “On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat conducting gas”, Sib. Math. J., 38:4 (1997), 663–684 | DOI | Zbl

[12] A.V. Kazhikhov, A.N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73

[13] A.N. Petrov, “Well-posedness of initial boundary value problems for one-dimensional equations of interpenetrating motion of perfect gases”, Din. Splosh. Sredy, 56 (1982), 105–121

[14] A.E. Mamontov, D.A. Prokudin, “Global solvability of 1D equations of viscous compressible multi-fluids”, Journal of Physics: Conf. Series, 894 (2017), 012059 | DOI

[15] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | Zbl

[16] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, J. Appl. Industr. Math., 15 (2021), 50–61 | DOI

[17] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland, Amsterdam etc, 1990 | Zbl