Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1742-1756.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $k$-regular graph is called a divisible design graph (DDG for short) if its vertex set can be partitioned into $m$ classes of size $n$, such that two distinct vertices from the same class have exactly $\lambda_1$ common neighbors, and two vertices from different classes have exactly $\lambda_2$ common neighbors. A $4$-by-$n$-lattice graph is the line graph of $K_{4,n}$. This graph is a DDG with parameters $(4n,n+2,n-2,2,4,n)$. In the paper, we consider DDGs with these parameters. We prove that if $n$ is odd, then such graph can only be a $4$-by-$n$-lattice graph. If $n$ is even, we characterise all DDGs with such parameters. Moreover, we characterise all DDGs with parameters $(4n,3n-2,3n-6,2n-2,4,n)$ that are related to $4$-by-$n$-lattice graphs. Also, we prove that if Deza graph with parameters $(4n,n+2,n-2,2)$ or $(4n,3n-2, 3n-6, 2n-2)$ is not a DDG, then $n\leq 8$. All such Deza graphs were classified by computer search.
Keywords: divisible desing graph, divisible design, Deza graph, lattice graph.
@article{SEMR_2021_18_2_a44,
     author = {L. Shalaginov},
     title = {Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1742--1756},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/}
}
TY  - JOUR
AU  - L. Shalaginov
TI  - Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1742
EP  - 1756
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/
LA  - en
ID  - SEMR_2021_18_2_a44
ER  - 
%0 Journal Article
%A L. Shalaginov
%T Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1742-1756
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/
%G en
%F SEMR_2021_18_2_a44
L. Shalaginov. Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1742-1756. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl

[2] D. Crnkovic, W.H. Haemers, More about Divisible Design Graphs, CentER Discussion Paper 2011-140, 2011 | MR

[3] D. Crnković, W.H. Haemers, “Walk-regular divisible design graphs”, Des. Codes Cryptography, 72:1 (2014), 165–175 | DOI | MR | Zbl

[4] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: A generalization of strongly regular graphs”, J. Comb. Des., 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] W.H Haemers, H. Kharaghani, M.A. Meulenberg, “Divisible design graphs”, J. Comb. Theory, Ser. A, 118:3 (2011), 978–992 | DOI | MR | Zbl

[6] V.V. Kabanov, E.V. Konstantinova, L. Shalaginov, “Generalised dual Seidel switching and Deza graphs with strongly regular children”, Discrete Math., 344:3 (2021), 112238 | DOI | MR | Zbl

[7] V.V. Kabanov, L. Shalaginov, “Deza graphs with parameters $(n, k, k - 2, a)$”, J. Comb. Des., 28:9 (2020), 658–669 | DOI | MR

[8] H.M. Mulder, “$(0,\lambda)$-graphs and $n$-cubes”, Discrete Math., 28 (1979), 179–188 | DOI | MR | Zbl

[9] M.A. Meulenberg, Divisible design graphs, Master's thesis, Tilburg University, 2008

[10] N. Graham, F. Harary, “The number of perfect matchings in a hypercube”, Appl. Math. Lett., 1:1 (1988), 45–48 | DOI | MR | Zbl

[11] J.H. van Lint, J.J. Seidel, “Equilateral point sets in elliptic geometry”, Nederl. Akad. Wet., Proc., Ser. A, 69 (1966), 335–348 | MR | Zbl