Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a44, author = {L. Shalaginov}, title = {Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1742--1756}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/} }
TY - JOUR AU - L. Shalaginov TI - Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1742 EP - 1756 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/ LA - en ID - SEMR_2021_18_2_a44 ER -
%0 Journal Article %A L. Shalaginov %T Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1742-1756 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/ %G en %F SEMR_2021_18_2_a44
L. Shalaginov. Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1742-1756. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl
[2] D. Crnkovic, W.H. Haemers, More about Divisible Design Graphs, CentER Discussion Paper 2011-140, 2011 | MR
[3] D. Crnković, W.H. Haemers, “Walk-regular divisible design graphs”, Des. Codes Cryptography, 72:1 (2014), 165–175 | DOI | MR | Zbl
[4] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: A generalization of strongly regular graphs”, J. Comb. Des., 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] W.H Haemers, H. Kharaghani, M.A. Meulenberg, “Divisible design graphs”, J. Comb. Theory, Ser. A, 118:3 (2011), 978–992 | DOI | MR | Zbl
[6] V.V. Kabanov, E.V. Konstantinova, L. Shalaginov, “Generalised dual Seidel switching and Deza graphs with strongly regular children”, Discrete Math., 344:3 (2021), 112238 | DOI | MR | Zbl
[7] V.V. Kabanov, L. Shalaginov, “Deza graphs with parameters $(n, k, k - 2, a)$”, J. Comb. Des., 28:9 (2020), 658–669 | DOI | MR
[8] H.M. Mulder, “$(0,\lambda)$-graphs and $n$-cubes”, Discrete Math., 28 (1979), 179–188 | DOI | MR | Zbl
[9] M.A. Meulenberg, Divisible design graphs, Master's thesis, Tilburg University, 2008
[10] N. Graham, F. Harary, “The number of perfect matchings in a hypercube”, Appl. Math. Lett., 1:1 (1988), 45–48 | DOI | MR | Zbl
[11] J.H. van Lint, J.J. Seidel, “Equilateral point sets in elliptic geometry”, Nederl. Akad. Wet., Proc., Ser. A, 69 (1966), 335–348 | MR | Zbl