Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a44, author = {L. Shalaginov}, title = {Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1742--1756}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/} }
TY - JOUR AU - L. Shalaginov TI - Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1742 EP - 1756 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/ LA - en ID - SEMR_2021_18_2_a44 ER -
%0 Journal Article %A L. Shalaginov %T Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1742-1756 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/ %G en %F SEMR_2021_18_2_a44
L. Shalaginov. Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1742-1756. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a44/