Error-tolerant ZZW-construction
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1506-1516

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2008 Zhang, Zhang, and Wang proposed a steganographic construction that is close to upper bound of efficiency. However this system and many other are fragile to errors in the stegocontainer. Such errors can occur for example during the image processing. In this paper the ZZW-construction is modified for extracting data if errors and erasures occur in stegocontainer. It is shown that the correction is possible when linear codes in projective metrics (such as Vandermonde metric and phase rotating metric) are used. The efficiency of proposed construction is better than one for the well-known efficient combinatorial stegosystem.
Keywords: combinatorial steganography, projective metrics, Vandermonde metric, linear code, ZZW-construction.
@article{SEMR_2021_18_2_a43,
     author = {Yu. V. Kosolapov and F. S. Pevnev},
     title = {Error-tolerant {ZZW-construction}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1506--1516},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/}
}
TY  - JOUR
AU  - Yu. V. Kosolapov
AU  - F. S. Pevnev
TI  - Error-tolerant ZZW-construction
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1506
EP  - 1516
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/
LA  - en
ID  - SEMR_2021_18_2_a43
ER  - 
%0 Journal Article
%A Yu. V. Kosolapov
%A F. S. Pevnev
%T Error-tolerant ZZW-construction
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1506-1516
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/
%G en
%F SEMR_2021_18_2_a43
Yu. V. Kosolapov; F. S. Pevnev. Error-tolerant ZZW-construction. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1506-1516. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/