Error-tolerant ZZW-construction
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1506-1516.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2008 Zhang, Zhang, and Wang proposed a steganographic construction that is close to upper bound of efficiency. However this system and many other are fragile to errors in the stegocontainer. Such errors can occur for example during the image processing. In this paper the ZZW-construction is modified for extracting data if errors and erasures occur in stegocontainer. It is shown that the correction is possible when linear codes in projective metrics (such as Vandermonde metric and phase rotating metric) are used. The efficiency of proposed construction is better than one for the well-known efficient combinatorial stegosystem.
Keywords: combinatorial steganography, projective metrics, Vandermonde metric, linear code, ZZW-construction.
@article{SEMR_2021_18_2_a43,
     author = {Yu. V. Kosolapov and F. S. Pevnev},
     title = {Error-tolerant {ZZW-construction}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1506--1516},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/}
}
TY  - JOUR
AU  - Yu. V. Kosolapov
AU  - F. S. Pevnev
TI  - Error-tolerant ZZW-construction
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1506
EP  - 1516
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/
LA  - en
ID  - SEMR_2021_18_2_a43
ER  - 
%0 Journal Article
%A Yu. V. Kosolapov
%A F. S. Pevnev
%T Error-tolerant ZZW-construction
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1506-1516
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/
%G en
%F SEMR_2021_18_2_a43
Yu. V. Kosolapov; F. S. Pevnev. Error-tolerant ZZW-construction. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1506-1516. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a43/

[1] G. Pan, Y.J. Wu, Z.H. Wu, “A novel data hiding method for two-color images”, Lect. Notes Comput. Sci., 2229, 2001, 261–270 | DOI | Zbl

[2] W. Zhang, X. Zhang, S. Wang, “Maximizing steganographic embedding efficiency by combining Hamming codes and wet paper codes”, Proc. 10th Int. Workshop Inf. Hiding, Lecture Notes in Computer Science, 5284, 2008, 60–71 | DOI

[3] F. Galand, G. Kabatiansky, “Information hiding by coverings”, Proceedings 2003 IEEE Information Theory Workshop, 2003, 151–154 | DOI

[4] L.A. Bassalygo, M.S. Pinsker, “Centered error-correcting codes”, Probl. Inf. Transm., 35:1 (1999), 25–31 | MR | Zbl

[5] X. Zhang, S. Wang, “Stego-encoding with error correction capability”, IEICE Trans. Fundamentals, E88-A:12 (2005), 3663–3667 | DOI

[6] A. Sarkar, U. Madhow, B. Manjunath, “Matrix embedding With pseudorandom coefficient selection and error correction for robust and secure steganography”, IEEE Transactions on Information Forensics and Security, 5:2 (2010), 225–239 | DOI

[7] C. Kin-Cleaves, A.D. Ker, “Adaptive steganography in the noisy channel with dual-syndrome trellis codes”, 2018 IEEE International Workshop on Information Forensics and Security (WIFS) (Hong Kong, Hong Kong, 2018), 1–7

[8] E.M. Gabidulin, J. Simonis, “Metrics generated by families of subspaces”, IEEE Trans. Inf. Theory, 44:3 (1998), 1336–1341 | DOI | MR | Zbl

[9] O. Ore, Theory of Graphs, Colloquium Publications, 38, American Mathematical Society, Providence, 1962 | DOI | MR | Zbl

[10] E.V. Konstantinova, “Some problems on Cayley graphs”, Linear Algebra Appl., 429:11–12 (2008), 2754–2769 | DOI | MR | Zbl

[11] J.-L. Kim, J. Park, S. Choi, “Steganographic schemes from perfect codes on Cayley graphs”, Des. Codes Cryptography, 87:10 (2019), 2361–2374 | DOI | MR | Zbl

[12] E.M. Gabidulin, M. Bossert, “Hard and soft decision decoding of phase rotation invariant block codes”, 1998 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking (Zurich, Switzerland, 1998), 249–251

[13] E.M. Gabidulin, V.A. Obernikhin, “Codes in the Vandermonde F-metric and their application”, Probl. Inf. Transm., 39:2 (2003), 159–169 | DOI | MR | Zbl

[14] J. Fridrich, M. Goljan, P. Lisonek, D. Soukal, “Writing on wet paper”, IEEE Trans. Signal Process., 53:10 (2005), 3923–3935 | DOI | MR | Zbl

[15] A.V. Kuznetsov, B.S. Tsybakov, “Coding in a memory with defective cells”, Probl. Peredaci Inform., 10:2 (1974), 52–60 | MR | Zbl

[16] G. McGuire, “Quasi-symmetric designs and codes meeting the Grey-Rankin bound”, J. Comb. Theory, Ser. A, 78:2 (1997), 280–291 | DOI | MR | Zbl