Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a42, author = {O. V. Borodin and A. O. Ivanova}, title = {Tight description of faces in torus triangulations with minimum degree~5}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1475--1481}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/} }
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova TI - Tight description of faces in torus triangulations with minimum degree~5 JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1475 EP - 1481 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/ LA - en ID - SEMR_2021_18_2_a42 ER -
%0 Journal Article %A O. V. Borodin %A A. O. Ivanova %T Tight description of faces in torus triangulations with minimum degree~5 %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1475-1481 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/ %G en %F SEMR_2021_18_2_a42
O. V. Borodin; A. O. Ivanova. Tight description of faces in torus triangulations with minimum degree~5. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1475-1481. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/
[1] S.V. Avgustinovich, O.V. Borodin, “Edge neighborhoods in normal maps”, Operations research and discrete analysis, Mathematics and its applications, 391, ed. Korshunov A.D., 1997, 17–22 | MR | Zbl
[2] O.V. Borodin, “Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs”, Math. Notes, 46:5 (1989), 835–837 | DOI | MR | Zbl
[3] O.V. Borodin, “Triangulated 3-polytopes without faces of low weight”, Discrete Math., 186:1–3 (1998), 281–285 | DOI | MR | Zbl
[4] O.V. Borodin, “Sharpening Lebesgue's theorem on the structure of lowest faces of convex polytopes”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002), 29–39 | MR | Zbl
[5] O.V. Borodin, “Colorings of plane graphs: a survey”, Discrete Math., 313:4 (2013), 517–539 | DOI | MR | Zbl
[6] O.V. Borodin, A.O. Ivanova, “Describing 3-faces in normal plane maps with minimum degree 4”, Discrete Math., 313:23 (2013), 2841–2847 | DOI | MR | Zbl
[7] O.V. Borodin, A.O. Ivanova, “New results about the structure of plane graphs: A survey”, AIP Conference Proceedings, 1907 (2017), 030051 | DOI | MR
[8] O.V. Borodin, A.O. Ivanova, “An improvement of Lebesgue's description of edges in $3$-polytopes and faces in plane quadrangulations”, Discrete Math., 342:6 (2019), 1820–1827 | DOI | MR | Zbl
[9] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, “Describing faces in plane triangulations”, Discrete Math., 319 (2014), 47–61 | DOI | MR | Zbl
[10] B. Grünbaum, “Polytopal graphs”, Studies in Graph Theory, MAA Studies in Mathematics, 12, ed. D. R. Fulkerson, 1975, 201–224 | MR | Zbl
[11] M. Horňák, S. Jendrol', “Unavoidable sets of face types for planar maps”, Discuss. Math., Graph Theory, 16:2 (1996), 123–141 | DOI | MR | Zbl
[12] S. Jendrol', H.-J. Voss, “Light subgraphs of graphs embedded in the plane. A survey”, Discrete Math., 313:4 (2013), 406–421 | DOI | MR | Zbl
[13] A. Kotzig, “From the theory of Euler's polyhedrons”, Mat.-Fyz. Čas., 13 (1963), 20–30 | MR | Zbl
[14] H. Lebesgue, “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., IX. Sér., 19 (1940), 27–43 | MR | Zbl
[15] O. Ore, M.D. Plummer, “Cyclic coloration of plane graphs”, Recent Progr. Comb., Proc. 3rd Waterloo Conf. (1968), 1969, 287–293 | MR | Zbl
[16] M.D. Plummer, “On the cyclic connectivity of planar graph”, Graph Theory Appl., Lect. Notes Math., 303, 1972, 235–242 | DOI | MR | Zbl