Tight description of faces in torus triangulations with minimum degree~5
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1475-1481
Voir la notice de l'article provenant de la source Math-Net.Ru
The degree $d$ of a vertex or face in a graph $G$ is the number of incident edges. A face $f=v_1\ldots v_{d}$ in a plane or torus graph $G$ is of type $(k_1,k_2,\ldots, k_d)$ if $d(v_i)\le k_i$ for each $i$. By $\delta$ we denote the minimum vertex-degree of $G$. In 1989, Borodin confirmed Kotzig's conjecture of 1963 that every plane graph with minimum degree $\delta$ equal to 5 has a $(5,5,7)$-face or a $(5,6,6)$-face, where all parameters are tight. It follows from the classical theorem of Lebesgue (1940) that every plane quadrangulation with $\delta\ge3$ has a face of one of the types $(3,3,3,\infty)$, $(3,3,4,11)$, $(3,3,5,7)$, $(3,4,4,5)$. Recently, we improved this description to the following one: "$(3,3,3,\infty)$, $(3,3,4,9)$, $(3,3,5,6)$, $(3,4,4,5)$", where all parameters except possibly $9$ are best possible and 9 cannot go down below 8. In 1995, Avgustinovich and Borodin proved that every torus quadrangulation with $\delta\ge3$ has a face of one of the following types: $(3,3,3,\infty)$, $(3, 3, 4, 10)$, $(3, 3, 5, 7)$, $(3, 3, 6, 6)$, $(3, 4, 4, 6)$, $(4, 4, 4, 4)$, where all parameters are best possible. The purpose of our note is to prove that every torus triangulation with $\delta\ge5$ has a face of one of the types $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, where all parameters are best possible.
Keywords:
plane graph, structure properties, 3-faces.
Mots-clés : torus, triangulation, quadrangulation
Mots-clés : torus, triangulation, quadrangulation
@article{SEMR_2021_18_2_a42,
author = {O. V. Borodin and A. O. Ivanova},
title = {Tight description of faces in torus triangulations with minimum degree~5},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1475--1481},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/}
}
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova TI - Tight description of faces in torus triangulations with minimum degree~5 JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1475 EP - 1481 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/ LA - en ID - SEMR_2021_18_2_a42 ER -
%0 Journal Article %A O. V. Borodin %A A. O. Ivanova %T Tight description of faces in torus triangulations with minimum degree~5 %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1475-1481 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/ %G en %F SEMR_2021_18_2_a42
O. V. Borodin; A. O. Ivanova. Tight description of faces in torus triangulations with minimum degree~5. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1475-1481. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a42/