Enumeration of strictly Deza graphs with at most $21$ vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1423-1432.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Deza graph $\Gamma$ with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices such that any two distinct vertices have $b$ or $a$ common neighbours, where $b \geqslant a$. A Deza graph of diameter $2$ which is not a strongly regular graph is called a strictly Deza graph. We find all $139$ strictly Deza graphs up to $21$ vertices and list corresponding constructions and properties.
Keywords: Deza graph, strictly Deza graph, strongly regular graph, dual Seidel switching.
@article{SEMR_2021_18_2_a41,
     author = {S. V. Goryainov and D. I. Panasenko and L. V. Shalaginov},
     title = {Enumeration of strictly {Deza} graphs with at most $21$ vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1423--1432},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/}
}
TY  - JOUR
AU  - S. V. Goryainov
AU  - D. I. Panasenko
AU  - L. V. Shalaginov
TI  - Enumeration of strictly Deza graphs with at most $21$ vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1423
EP  - 1432
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/
LA  - en
ID  - SEMR_2021_18_2_a41
ER  - 
%0 Journal Article
%A S. V. Goryainov
%A D. I. Panasenko
%A L. V. Shalaginov
%T Enumeration of strictly Deza graphs with at most $21$ vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1423-1432
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/
%G en
%F SEMR_2021_18_2_a41
S. V. Goryainov; D. I. Panasenko; L. V. Shalaginov. Enumeration of strictly Deza graphs with at most $21$ vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1423-1432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/

[1] G. Chen, I. Ponomarenko, Coherent configurations, Central China Normal University Press, 2019

[2] D. Crnković, W.H. Haemers, “Walk-regular divisible design graphs”, Des. Codes Cryptography, 72:1 (2014), 165–175 | DOI | Zbl

[3] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: A generalization of strongly regular graphs”, J. Comb. Des., 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[4] S. Goryainov, W.H. Haemers, V.V. Kabanov, L. Shalaginov, “Deza graphs with parameters $(n,k,k-1,a)$ and $\beta = 1$”, J. Comb. Des., 17:3 (2019), 188–202 | DOI | Zbl

[5] S. Goryainov, L. Shalaginov, “Cayley-Deza graphs with fewer than 60 vertices”, Sib. Èlektron. Mat. Izv., 11 (2014), 268–310 | Zbl

[6] S. Goryainov, L. Shalaginov, “Deza graphs on 14, 15 and 16 vertices”, Sib. Èlektron. Mat. Izv., 8 (2011), 105–115 | Zbl

[7] W.H Haemers, H. Kharaghani, M.A. Meulenberg, “Divisible design graphs”, J. Comb. Theory, Ser. A, 118:3 (2011), 978–992 | DOI | Zbl

[8] V.V. Kabanov, E.V. Konstantinova, L. Shalaginov, “Generalised dual Seidel switching and Deza graphs with strongly regular children”, Discrete Math., 344:3 (2021), 112238 | DOI | Zbl

[9] A. Leman, B. Weisfeiler, “The reduction of a graph to canonical form and the algebra which appears therein”, Nauchno-Technicheskaya Informatsia, 9 (1968), 12–16

[10] M.A. Meulenberg, Divisible design graphs, Master's thesis, Tilburg University, 2008