Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a41, author = {S. V. Goryainov and D. I. Panasenko and L. V. Shalaginov}, title = {Enumeration of strictly {Deza} graphs with at most $21$ vertices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1423--1432}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/} }
TY - JOUR AU - S. V. Goryainov AU - D. I. Panasenko AU - L. V. Shalaginov TI - Enumeration of strictly Deza graphs with at most $21$ vertices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1423 EP - 1432 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/ LA - en ID - SEMR_2021_18_2_a41 ER -
%0 Journal Article %A S. V. Goryainov %A D. I. Panasenko %A L. V. Shalaginov %T Enumeration of strictly Deza graphs with at most $21$ vertices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1423-1432 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/ %G en %F SEMR_2021_18_2_a41
S. V. Goryainov; D. I. Panasenko; L. V. Shalaginov. Enumeration of strictly Deza graphs with at most $21$ vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1423-1432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/
[1] G. Chen, I. Ponomarenko, Coherent configurations, Central China Normal University Press, 2019
[2] D. Crnković, W.H. Haemers, “Walk-regular divisible design graphs”, Des. Codes Cryptography, 72:1 (2014), 165–175 | DOI | Zbl
[3] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: A generalization of strongly regular graphs”, J. Comb. Des., 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[4] S. Goryainov, W.H. Haemers, V.V. Kabanov, L. Shalaginov, “Deza graphs with parameters $(n,k,k-1,a)$ and $\beta = 1$”, J. Comb. Des., 17:3 (2019), 188–202 | DOI | Zbl
[5] S. Goryainov, L. Shalaginov, “Cayley-Deza graphs with fewer than 60 vertices”, Sib. Èlektron. Mat. Izv., 11 (2014), 268–310 | Zbl
[6] S. Goryainov, L. Shalaginov, “Deza graphs on 14, 15 and 16 vertices”, Sib. Èlektron. Mat. Izv., 8 (2011), 105–115 | Zbl
[7] W.H Haemers, H. Kharaghani, M.A. Meulenberg, “Divisible design graphs”, J. Comb. Theory, Ser. A, 118:3 (2011), 978–992 | DOI | Zbl
[8] V.V. Kabanov, E.V. Konstantinova, L. Shalaginov, “Generalised dual Seidel switching and Deza graphs with strongly regular children”, Discrete Math., 344:3 (2021), 112238 | DOI | Zbl
[9] A. Leman, B. Weisfeiler, “The reduction of a graph to canonical form and the algebra which appears therein”, Nauchno-Technicheskaya Informatsia, 9 (1968), 12–16
[10] M.A. Meulenberg, Divisible design graphs, Master's thesis, Tilburg University, 2008