Enumeration of strictly Deza graphs with at most $21$ vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1423-1432

Voir la notice de l'article provenant de la source Math-Net.Ru

A Deza graph $\Gamma$ with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices such that any two distinct vertices have $b$ or $a$ common neighbours, where $b \geqslant a$. A Deza graph of diameter $2$ which is not a strongly regular graph is called a strictly Deza graph. We find all $139$ strictly Deza graphs up to $21$ vertices and list corresponding constructions and properties.
Keywords: Deza graph, strictly Deza graph, strongly regular graph, dual Seidel switching.
@article{SEMR_2021_18_2_a41,
     author = {S. V. Goryainov and D. I. Panasenko and L. V. Shalaginov},
     title = {Enumeration of strictly {Deza} graphs with at most $21$ vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1423--1432},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/}
}
TY  - JOUR
AU  - S. V. Goryainov
AU  - D. I. Panasenko
AU  - L. V. Shalaginov
TI  - Enumeration of strictly Deza graphs with at most $21$ vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1423
EP  - 1432
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/
LA  - en
ID  - SEMR_2021_18_2_a41
ER  - 
%0 Journal Article
%A S. V. Goryainov
%A D. I. Panasenko
%A L. V. Shalaginov
%T Enumeration of strictly Deza graphs with at most $21$ vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1423-1432
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/
%G en
%F SEMR_2021_18_2_a41
S. V. Goryainov; D. I. Panasenko; L. V. Shalaginov. Enumeration of strictly Deza graphs with at most $21$ vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1423-1432. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a41/