Minimum weight bases for quaternary Reed -- Muller codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1358-1366.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quaternary Plotkin and BQ-Plotkin constructions giving the families of quaternary Reed – Muller codes were presented in 2009. The Gray map image of the obtained $\mathbb{Z}_4$-linear codes have the same parameters and fundamental properties as the codes in the classical binary linear Reed – Muller family. We have found one more general property for the families of quaternary Reed – Muller codes that is common with binary Reed – Muller codes: all these quaternary codes have bases of minimum weight codewords. The bases are constructed by induction.
Keywords: Reed – Muller code, quaternary code, additive code, quaternary Reed – Muller code, minimum weight basis, $\mathbb{Z}_4$-linear code.
@article{SEMR_2021_18_2_a40,
     author = {F. I. Solov'eva},
     title = {Minimum weight bases for quaternary {Reed} -- {Muller} codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1358--1366},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/}
}
TY  - JOUR
AU  - F. I. Solov'eva
TI  - Minimum weight bases for quaternary Reed -- Muller codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1358
EP  - 1366
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/
LA  - en
ID  - SEMR_2021_18_2_a40
ER  - 
%0 Journal Article
%A F. I. Solov'eva
%T Minimum weight bases for quaternary Reed -- Muller codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1358-1366
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/
%G en
%F SEMR_2021_18_2_a40
F. I. Solov'eva. Minimum weight bases for quaternary Reed -- Muller codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1358-1366. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/

[1] S.V. Avgustinovich, “On isometry of close-packed binary codes”, Sib. Adv. Math., 5:3 (1995), 1–4 (English. Russian original) | Zbl

[2] D.S. Krotov, “$\mathbb{Z}_4$-linear perfect codes”, Discretn Anal. Isslrd. Oper., Ser. 1, 7:4 (2000), 78–90 | Zbl

[3] D.S. Krotov, “$\mathbb{Z}_4$-linear Hadamard and extended perfect codes”, WCC2001 international Workshop on coding and cryptography (Paris (France), Jan. 8–12, 2001), Electron. Notes Discrete Math., 6, eds. Augot Daniel et al., Elsevier, Amsterdam, 2001 | DOI | Zbl

[4] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, North-Holland Publishing Company, Amsterdam etc, 1977 | Zbl

[5] I. Yu. Mogilnykh, P.R.J. Östergård, O. Pottonen, F.I. Solov'eva, “Reconstructing extended perfect binary one-error-correcting codes from their minimum distance graphs”, IEEE Trans. Inf. Theory, 55:6 (2009), 2622–2625 | DOI | Zbl

[6] I. Yu. Mogilnykh, F.I. Solov'eva, “On explicit minimum weight bases for extended cyclic codes related to Gold functions”, Des. Codes Cryptography, 86:11 (2018), 2619–2627 | DOI | Zbl

[7] I. Yu. Mogilnykh, F.I. Solov'eva, “On bases of BCH codes with designed distance 3 and their extensions”, Probl. Inf. Transm., 56:4 (2020), 309–316 | DOI | Zbl

[8] J. Pernas, J. Pujol, M. Villanueva, “Rank for some families of quaternary Reed-Muller codes”, Applied algebra, algebraic algorithms and error-correcting codes, AAECC 2009, Lecture Notes in Computer Science, 5527, eds. Bras-Amorgs M., et al., Springer, Berlin, 2009, 43–52 | DOI | Zbl

[9] J. Pernas, J. Pujol, M. Villanueva, “Classification of some families of quaternary Reed-Muller codes”, IEEE Trans. Inf. Theory, 57:9 (2011), 6043–6051 | DOI | Zbl

[10] J. Pujol, J. Rifà, F.I. Solov'eva, “Quaternary Plotkin constructions and quaternary Reed-Muller codes”, Lecture Notes in Computer Science, 4851, 2007, 148–157 | DOI | Zbl

[11] J. Pujol, J. Rifà, F.I. Solov'eva, “Construction of Z4-linear Reed-Muller codes”, IEEE Trans. Inf. Theory, 55:1 (2009), 99–104 | DOI | Zbl

[12] F.I. Solov'eva, “On Z4-linear codes with parameters of Reed-Muller codes”, Probl. Inf. Transm., 43:1 (2007), 26–32 | DOI | Zbl