Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a40, author = {F. I. Solov'eva}, title = {Minimum weight bases for quaternary {Reed} -- {Muller} codes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1358--1366}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/} }
F. I. Solov'eva. Minimum weight bases for quaternary Reed -- Muller codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1358-1366. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a40/
[1] S.V. Avgustinovich, “On isometry of close-packed binary codes”, Sib. Adv. Math., 5:3 (1995), 1–4 (English. Russian original) | Zbl
[2] D.S. Krotov, “$\mathbb{Z}_4$-linear perfect codes”, Discretn Anal. Isslrd. Oper., Ser. 1, 7:4 (2000), 78–90 | Zbl
[3] D.S. Krotov, “$\mathbb{Z}_4$-linear Hadamard and extended perfect codes”, WCC2001 international Workshop on coding and cryptography (Paris (France), Jan. 8–12, 2001), Electron. Notes Discrete Math., 6, eds. Augot Daniel et al., Elsevier, Amsterdam, 2001 | DOI | Zbl
[4] F.J. MacWilliams, N.J.A. Sloane, The theory of error-correcting codes, North-Holland Publishing Company, Amsterdam etc, 1977 | Zbl
[5] I. Yu. Mogilnykh, P.R.J. Östergård, O. Pottonen, F.I. Solov'eva, “Reconstructing extended perfect binary one-error-correcting codes from their minimum distance graphs”, IEEE Trans. Inf. Theory, 55:6 (2009), 2622–2625 | DOI | Zbl
[6] I. Yu. Mogilnykh, F.I. Solov'eva, “On explicit minimum weight bases for extended cyclic codes related to Gold functions”, Des. Codes Cryptography, 86:11 (2018), 2619–2627 | DOI | Zbl
[7] I. Yu. Mogilnykh, F.I. Solov'eva, “On bases of BCH codes with designed distance 3 and their extensions”, Probl. Inf. Transm., 56:4 (2020), 309–316 | DOI | Zbl
[8] J. Pernas, J. Pujol, M. Villanueva, “Rank for some families of quaternary Reed-Muller codes”, Applied algebra, algebraic algorithms and error-correcting codes, AAECC 2009, Lecture Notes in Computer Science, 5527, eds. Bras-Amorgs M., et al., Springer, Berlin, 2009, 43–52 | DOI | Zbl
[9] J. Pernas, J. Pujol, M. Villanueva, “Classification of some families of quaternary Reed-Muller codes”, IEEE Trans. Inf. Theory, 57:9 (2011), 6043–6051 | DOI | Zbl
[10] J. Pujol, J. Rifà, F.I. Solov'eva, “Quaternary Plotkin constructions and quaternary Reed-Muller codes”, Lecture Notes in Computer Science, 4851, 2007, 148–157 | DOI | Zbl
[11] J. Pujol, J. Rifà, F.I. Solov'eva, “Construction of Z4-linear Reed-Muller codes”, IEEE Trans. Inf. Theory, 55:1 (2009), 99–104 | DOI | Zbl
[12] F.I. Solov'eva, “On Z4-linear codes with parameters of Reed-Muller codes”, Probl. Inf. Transm., 43:1 (2007), 26–32 | DOI | Zbl