Kleene star, subexponentials without contraction, and infinite computations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 905-922
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an extension of intuitionistic non-commutative linear logic with Kleene star and subexponentials which allow permutation and/or weakening, but not contraction. Subexponentials which allow contraction are useful for specifying correct terminating of computing systems (e.g., Turing machines). Dually, we show that Kleene star axiomatized by an omega-rule allows modelling infinite (never terminating) behaviour. Our system belongs to the $\Pi_1^0$ complexity class. Actually, it is $\Pi_1^0$-complete due to Buszkowski (2007). We show $\Pi_1^0$-hardness of the unidirectional fragment of this logic with two subexponentials and Kleene star (this result does not follow from Buszkowski’s construction). The omega-rule axiomatization can be equivalently reformulated as calculus with non-well-founded proofs (Das Pous, 2018). We also consider the fragment of this calculus with circular proofs. This fragment is capable of modelling looping of a Turing machine, but, interestingly enough, some non-cyclic computations can also be captured by this circular fragment.
Keywords:
linear logic, Kleene star, infinite computations, complexity.
@article{SEMR_2021_18_2_a4,
author = {S. L. Kuznetsov},
title = {Kleene star, subexponentials without contraction, and infinite computations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {905--922},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a4/}
}
TY - JOUR AU - S. L. Kuznetsov TI - Kleene star, subexponentials without contraction, and infinite computations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 905 EP - 922 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a4/ LA - en ID - SEMR_2021_18_2_a4 ER -
S. L. Kuznetsov. Kleene star, subexponentials without contraction, and infinite computations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 905-922. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a4/