On a class of vertex-transitive distance-regular covers of complete graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 758-781

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the problem of classification of abelian antipodal distance-regular graphs $\Gamma$ of diameter three with the following property $(*)$: there is a vertex-transitive group of automorphisms $G$ of $\Gamma$ which induces an almost simple primitive permutation group $G^{\Sigma}$ on the set $\Sigma$ of antipodal classes of $\Gamma$. This problem has been recently solved in the case when the permutation rank $\mathrm{rk}(G^{\Sigma})$ of $G^{\Sigma}$ equals $2$ (which implies classification of all arc-transitive representatives). Here we start to study the next case $\mathrm{rk}(G^{\Sigma})=3$. We elaborate a method of reduction to minimal quotients of $\Gamma$, which gives us a base for a classification scheme that depends on a type of such quotient. By analysing equitable partitions of $\Gamma$ which arise as collections of orbits of some subgroups of $G$, we obtain several strong restrictions on spectra and parameters of $\Gamma$ as well as a description of its minimal quotients. This allows us to settle the case when the socle of $G^{\Sigma}$ is a sporadic simple group.
Keywords: distance-regular graph, abelian cover, vertex-transitive graph, rank $3$ group.
Mots-clés : antipodal cover
@article{SEMR_2021_18_2_a36,
     author = {L. Yu. Tsiovkina},
     title = {On a class of vertex-transitive distance-regular covers of complete graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {758--781},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a36/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On a class of vertex-transitive distance-regular covers of complete graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 758
EP  - 781
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a36/
LA  - ru
ID  - SEMR_2021_18_2_a36
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On a class of vertex-transitive distance-regular covers of complete graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 758-781
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a36/
%G ru
%F SEMR_2021_18_2_a36
L. Yu. Tsiovkina. On a class of vertex-transitive distance-regular covers of complete graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 758-781. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a36/