Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1735-1741.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the topology of an uncountable Borel subset of the Sorgenfrey line is equal to the supremum of metrizable compact topologies. As a corollary we obtain that a Borel subset of the Sorgenfrey line has a weak Hausdorff compact topology if and only if it is either uncountable or countable and scattered.
Keywords: Sorgenfrey line, Borel set, supremum of topologies, weak compact topology, Lusin scheme.
Mots-clés : compact condensation
@article{SEMR_2021_18_2_a35,
     author = {V. R. Smolin},
     title = {Continuous bijections of {Borel} subsets of the {Sorgenfrey} line on compact spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1735--1741},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/}
}
TY  - JOUR
AU  - V. R. Smolin
TI  - Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1735
EP  - 1741
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/
LA  - ru
ID  - SEMR_2021_18_2_a35
ER  - 
%0 Journal Article
%A V. R. Smolin
%T Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1735-1741
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/
%G ru
%F SEMR_2021_18_2_a35
V. R. Smolin. Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1735-1741. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/

[1] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[2] E.G. Pytkeev, “Upper bounds of topologies”, Math. Notes, 20:4 (1976), 831–837 | DOI | MR | Zbl

[3] M. Katětov, “On mappings of countable spaces”, Colloq. Math., 2:1 (1949), 30–33 | DOI | MR | Zbl

[4] R. Engelking, General topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989 | MR | Zbl

[5] M. Patrakeev, “Metrizable images of the Sorgenfrey line”, Topol. Proc., 45 (2015), 253–269 | MR | Zbl

[6] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam etc., 1980 | MR | Zbl

[7] E.G. Pytkeev, Continuous bijections on compact spaces and complete metric spaces, Ph.D. thesis, Sverdlovsk, 1978

[8] W.W. Comfort, A.W. Hager, J. van Mill, “Compact condensations and compactifications”, Topology Appl., 259 (2019), 67–79 | DOI | MR | Zbl

[9] A.V. Arkhangel'skii, V.I. Ponomarev, Fundamentals of general topology: problems and exercises, Mathematics and Its Applications, 13, D. Reidel Publishing Company, Dordrecht etc., 1984 | MR | Zbl