Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1735-1741
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the topology of an uncountable Borel subset of the Sorgenfrey line is equal to the supremum of metrizable compact topologies. As a corollary we obtain that a Borel subset of the Sorgenfrey line has a weak Hausdorff compact topology if and only if it is either uncountable or countable and scattered.
Keywords:
Sorgenfrey line, Borel set, supremum of topologies, weak compact topology, Lusin scheme.
Mots-clés : compact condensation
Mots-clés : compact condensation
@article{SEMR_2021_18_2_a35,
author = {V. R. Smolin},
title = {Continuous bijections of {Borel} subsets of the {Sorgenfrey} line on compact spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1735--1741},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/}
}
TY - JOUR AU - V. R. Smolin TI - Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1735 EP - 1741 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/ LA - ru ID - SEMR_2021_18_2_a35 ER -
V. R. Smolin. Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1735-1741. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/