Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a35, author = {V. R. Smolin}, title = {Continuous bijections of {Borel} subsets of the {Sorgenfrey} line on compact spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1735--1741}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/} }
TY - JOUR AU - V. R. Smolin TI - Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1735 EP - 1741 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/ LA - ru ID - SEMR_2021_18_2_a35 ER -
V. R. Smolin. Continuous bijections of Borel subsets of the Sorgenfrey line on compact spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1735-1741. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a35/
[1] A.S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[2] E.G. Pytkeev, “Upper bounds of topologies”, Math. Notes, 20:4 (1976), 831–837 | DOI | MR | Zbl
[3] M. Katětov, “On mappings of countable spaces”, Colloq. Math., 2:1 (1949), 30–33 | DOI | MR | Zbl
[4] R. Engelking, General topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989 | MR | Zbl
[5] M. Patrakeev, “Metrizable images of the Sorgenfrey line”, Topol. Proc., 45 (2015), 253–269 | MR | Zbl
[6] K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam etc., 1980 | MR | Zbl
[7] E.G. Pytkeev, Continuous bijections on compact spaces and complete metric spaces, Ph.D. thesis, Sverdlovsk, 1978
[8] W.W. Comfort, A.W. Hager, J. van Mill, “Compact condensations and compactifications”, Topology Appl., 259 (2019), 67–79 | DOI | MR | Zbl
[9] A.V. Arkhangel'skii, V.I. Ponomarev, Fundamentals of general topology: problems and exercises, Mathematics and Its Applications, 13, D. Reidel Publishing Company, Dordrecht etc., 1984 | MR | Zbl