Spatial graphs and their isotopy classification
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396
Cet article a éte moissonné depuis la source Math-Net.Ru
The author's results related to the isotopic classification of orientable spatial framed graphs and contained in his recent paper are generalized to not necessarily orientable spatial framed graphs.
Keywords:
skeleton, tangle, isotopy.
Mots-clés : spatial graph
Mots-clés : spatial graph
@article{SEMR_2021_18_2_a34,
author = {V. M. Nezhinskij},
title = {Spatial graphs and their isotopy classification},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1390--1396},
year = {2021},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/}
}
V. M. Nezhinskij. Spatial graphs and their isotopy classification. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/
[1] J.H. Conway, “An enumaration of knots and links, and some of their algebraic properties”, Computational problems in abstract algebra, Proc. Conf., Pergamon, Oxford, 1967, 329–358
[2] M.W. Hirsch, Differential topology, Graduate texts in Mathematics, 33, Springer-Verlag, New York etc, 1976 | DOI | Zbl
[3] W.B.R. Lickorish, “Prime knots and tangles”, Trans. Am. Math. Soc., 267 (1981), 321–332 | DOI | Zbl
[4] V.M. Nezhinskij, “Isotopy invariants of spatial graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 769–776 | DOI | Zbl
[5] V.M. Nezhinskij, “Spatial graphs, tangles and plane trees”, St. Petersburg Math. J., 31:6 (2020), 1055–1063 | DOI | Zbl