Spatial graphs and their isotopy classification
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author's results related to the isotopic classification of orientable spatial framed graphs and contained in his recent paper are generalized to not necessarily orientable spatial framed graphs.
Keywords: skeleton, tangle, isotopy.
Mots-clés : spatial graph
@article{SEMR_2021_18_2_a34,
     author = {V. M. Nezhinskij},
     title = {Spatial graphs and their isotopy classification},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1390--1396},
     year = {2021},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/}
}
TY  - JOUR
AU  - V. M. Nezhinskij
TI  - Spatial graphs and their isotopy classification
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1390
EP  - 1396
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/
LA  - en
ID  - SEMR_2021_18_2_a34
ER  - 
%0 Journal Article
%A V. M. Nezhinskij
%T Spatial graphs and their isotopy classification
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1390-1396
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/
%G en
%F SEMR_2021_18_2_a34
V. M. Nezhinskij. Spatial graphs and their isotopy classification. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/

[1] J.H. Conway, “An enumaration of knots and links, and some of their algebraic properties”, Computational problems in abstract algebra, Proc. Conf., Pergamon, Oxford, 1967, 329–358

[2] M.W. Hirsch, Differential topology, Graduate texts in Mathematics, 33, Springer-Verlag, New York etc, 1976 | DOI | Zbl

[3] W.B.R. Lickorish, “Prime knots and tangles”, Trans. Am. Math. Soc., 267 (1981), 321–332 | DOI | Zbl

[4] V.M. Nezhinskij, “Isotopy invariants of spatial graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 769–776 | DOI | Zbl

[5] V.M. Nezhinskij, “Spatial graphs, tangles and plane trees”, St. Petersburg Math. J., 31:6 (2020), 1055–1063 | DOI | Zbl