Spatial graphs and their isotopy classification
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author's results related to the isotopic classification of orientable spatial framed graphs and contained in his recent paper are generalized to not necessarily orientable spatial framed graphs.
Keywords: skeleton, tangle, isotopy.
Mots-clés : spatial graph
@article{SEMR_2021_18_2_a34,
     author = {V. M. Nezhinskij},
     title = {Spatial graphs and their isotopy classification},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1390--1396},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/}
}
TY  - JOUR
AU  - V. M. Nezhinskij
TI  - Spatial graphs and their isotopy classification
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1390
EP  - 1396
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/
LA  - en
ID  - SEMR_2021_18_2_a34
ER  - 
%0 Journal Article
%A V. M. Nezhinskij
%T Spatial graphs and their isotopy classification
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1390-1396
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/
%G en
%F SEMR_2021_18_2_a34
V. M. Nezhinskij. Spatial graphs and their isotopy classification. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1390-1396. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a34/

[1] J.H. Conway, “An enumaration of knots and links, and some of their algebraic properties”, Computational problems in abstract algebra, Proc. Conf., Pergamon, Oxford, 1967, 329–358

[2] M.W. Hirsch, Differential topology, Graduate texts in Mathematics, 33, Springer-Verlag, New York etc, 1976 | DOI | Zbl

[3] W.B.R. Lickorish, “Prime knots and tangles”, Trans. Am. Math. Soc., 267 (1981), 321–332 | DOI | Zbl

[4] V.M. Nezhinskij, “Isotopy invariants of spatial graphs”, Sib. Èlektron. Mat. Izv., 17 (2020), 769–776 | DOI | Zbl

[5] V.M. Nezhinskij, “Spatial graphs, tangles and plane trees”, St. Petersburg Math. J., 31:6 (2020), 1055–1063 | DOI | Zbl