Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a33, author = {Yu. D. Efremenko}, title = {On semi-implicit numerical method for surface diffusion equation for triangulated surfaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1367--1389}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a33/} }
TY - JOUR AU - Yu. D. Efremenko TI - On semi-implicit numerical method for surface diffusion equation for triangulated surfaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1367 EP - 1389 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a33/ LA - en ID - SEMR_2021_18_2_a33 ER -
%0 Journal Article %A Yu. D. Efremenko %T On semi-implicit numerical method for surface diffusion equation for triangulated surfaces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1367-1389 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a33/ %G en %F SEMR_2021_18_2_a33
Yu. D. Efremenko. On semi-implicit numerical method for surface diffusion equation for triangulated surfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1367-1389. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a33/
[1] W. Mullins, “Theory of Thermal Grooving”, J. Appl. Physics, 28:3 (1957), 333–339 | DOI
[2] Ya.E. Gegusin, Fizika spekaniya, Nauka, M., 1984
[3] Ya.V. Bazaikin, V.S. Derevschikov, E.G. Malkovich, A.I. Lysikov, A.G. Okunev, “Evolution of sorptive and textural properties of CaO-based sorbents during repetitive sorption/regeneration cycles: Part II. Modeling of sorbent sintering during initial cycles”, Chemical Engineering Science, 199 (2019), 156–163 | DOI
[4] J. Escher, U.F. Mayer, G. Simonett, “The surface diffusion flow for immersed hypersurfaces”, SIAM J. Math. Anal., 29:6 (1998), 1419–1433 | DOI | Zbl
[5] U.F. Mayer, G. Simonett, “Self-intersections for the surface diffusion and the volume-preserving mean curvature flow”, Differ. Integral Equ., 13:7–9 (2000), 1189–1199 | Zbl
[6] U.F. Mayer, “Numerical solutions for the surface diffusion flow in three space dimensions”, Comput. Appl. Math., 20:3 (2001), 361–379 | Zbl
[7] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. II, John Wiley and Sons, New York etc, 1969 | Zbl
[8] P. Smereka, “Semi-implicit level set methods for curvature and surface diffusion motion”, J. Sci. Comput., 19:1–3 (2003), 439–456 | DOI | Zbl
[9] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, Wiley Sons, New York-London, 1963 | Zbl
[10] M. Cenanovic, P. Hansbo, M.G. Larson, Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement, 2017, arXiv: 1703.05745v1 [math.NA]
[11] K. Watanabe, A.G. Belyaev, “Detection of salient curvature features on polygonal surfaces”, EUROGRAPHICS, 20:3 (2001), 385–392
[12] E. Magid, O. Soldea, E. Rivlin, “A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data”, Computer Vision and Image Understanding, 107:3 (2007), 139–159 | DOI
[13] M. Meyer, M. Desbrun, P. Schroder, A.H. Barr, “Discrete differential-geometry operators for triangulated 2-manifolds”, Visualization and Mathematics III, eds. Hege Hans-Christian et al., Springer, Berlin, 2003, 35–57 | DOI | Zbl
[14] U. Pinkall, K. Polthier, “Computing discrete minimal surfaces and their conjugates”, Exp. Math., 2:1 (1993), 15–36 | DOI | Zbl
[15] J.-D. Boissonnat, S. Oudot, “Provably good sampling and meshing of surfaces”, Graph. Models, 67:5 (2005), 405–451 | DOI | Zbl
[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, “Surface reconstruction from unorganized points”, Computer Graphics, 26:2 (1992), 71–77 | DOI
[17] M. Botsch, L. Kobbelt, “A remeshing approach to multiresolution modeling”, Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry Processing, 2004, 189–196