Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a32, author = {F. G. Korablev}, title = {Quandles, quasoids and projections}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1261--1277}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/} }
F. G. Korablev. Quandles, quasoids and projections. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1261-1277. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/
[1] S.V. Matveev, “Distributive groupoids in knot theory”, Math. USSR, Sb., 47 (1984), 73–83 | DOI | Zbl
[2] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23 (1982), 37–65 | DOI | Zbl
[3] J.S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Am. Math. Soc., 355:10 (2003), 3947–3989 | DOI | Zbl
[4] Z. Cheng, H. Gao, “Positive quandle homology and its applications in knot theory”, Algebr. Geom. Topol., 15:2 (2015), 933–963 | DOI | Zbl
[5] F.G. Korablev, “Quasoids in knot theory”, Proc. Steklov Inst. Math., 303, Suppl. 1 (2018), S156–S165 | DOI | Zbl
[6] M. Niebrzydowski, “On some ternary operations in knot theory”, Fundam. Math., 225:1 (2014), 259–276 | DOI | Zbl
[7] S. Nelson, S. Pico, “Virtual tribrackets”, J. Knot Theory Ramifications, 28:4 (2019), 1950026 | DOI | Zbl
[8] S. Nelson, K. Oshiro, N. Oyamaguchi, “Local biquandles and Niebrzydowski's tribracket theory”, Topology Appl., 258 (2019), 474–512 | DOI | Zbl
[9] Ph.G. Korablev, “Cocyclic quasoid knot invariants”, Sib. Math. J., 61:2 (2020), 271–289 | DOI | Zbl