Quandles, quasoids and projections
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1261-1277.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study connections between two algebraic constructions — quandles and quasoids. Both of them are motivated by colorings of knot diagrams. There are constructions of cocyclic knot invariants as for quandles and for quasoids. In this paper we, at first, introduce the notion of projection from quasoid to quandle and, at second, construct mixed cocyclic invariants, which use quandles, quasoids and projections in their definition.
Mots-clés : Quandle, quasoid, cocyclic invariant, chain complex.
@article{SEMR_2021_18_2_a32,
     author = {F. G. Korablev},
     title = {Quandles, quasoids and projections},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1261--1277},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - Quandles, quasoids and projections
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1261
EP  - 1277
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/
LA  - ru
ID  - SEMR_2021_18_2_a32
ER  - 
%0 Journal Article
%A F. G. Korablev
%T Quandles, quasoids and projections
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1261-1277
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/
%G ru
%F SEMR_2021_18_2_a32
F. G. Korablev. Quandles, quasoids and projections. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1261-1277. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a32/

[1] S.V. Matveev, “Distributive groupoids in knot theory”, Math. USSR, Sb., 47 (1984), 73–83 | DOI | Zbl

[2] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23 (1982), 37–65 | DOI | Zbl

[3] J.S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Am. Math. Soc., 355:10 (2003), 3947–3989 | DOI | Zbl

[4] Z. Cheng, H. Gao, “Positive quandle homology and its applications in knot theory”, Algebr. Geom. Topol., 15:2 (2015), 933–963 | DOI | Zbl

[5] F.G. Korablev, “Quasoids in knot theory”, Proc. Steklov Inst. Math., 303, Suppl. 1 (2018), S156–S165 | DOI | Zbl

[6] M. Niebrzydowski, “On some ternary operations in knot theory”, Fundam. Math., 225:1 (2014), 259–276 | DOI | Zbl

[7] S. Nelson, S. Pico, “Virtual tribrackets”, J. Knot Theory Ramifications, 28:4 (2019), 1950026 | DOI | Zbl

[8] S. Nelson, K. Oshiro, N. Oyamaguchi, “Local biquandles and Niebrzydowski's tribracket theory”, Topology Appl., 258 (2019), 474–512 | DOI | Zbl

[9] Ph.G. Korablev, “Cocyclic quasoid knot invariants”, Sib. Math. J., 61:2 (2020), 271–289 | DOI | Zbl