@article{SEMR_2021_18_2_a31,
author = {N. Abrosimov and B. Vuong},
title = {The volume of a spherical antiprism with $S_{2n}$ symmetry},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1165--1179},
year = {2021},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a31/}
}
N. Abrosimov; B. Vuong. The volume of a spherical antiprism with $S_{2n}$ symmetry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1165-1179. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a31/
[1] N.V. Abrosimov, E.S. Kudina, A.D. Mednykh, “On the volume of a hyperbolic octahedron with $\overline{3}$-symmetry”, Proceedings of the Steklov Institute of Mathematics, 288 (2015), 1–9 | DOI | MR | Zbl
[2] N. Abrosimov, B. Vuong, “The volume of a compact hyperbolic antiprism”, Journal of Knot Theory and Its Ramifications, 27:13 (2018), 1842010 | DOI | MR | Zbl
[3] N.V. Abrosimov, Vuong Huu Bao, “The volume of a hyperbolic tetrahedron with symmetry group $S_4$”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23, no. 4, 2017, 7–17 | DOI | MR
[4] D.V. Alekseevskii, E.B. Vinberg, A.S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry II: Spaces of Constant Curvature, Encyclopedia of Mathematical Sciences, 29, Springer, 1993 | MR | Zbl
[5] W.P. Thurston, The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton University, 1980
[6] A. Yu. Vesnin, On Volumes of Some Hyperbolic 3-Manifolds, Lecture Notes Series, 30, Seoul National University, 1996 | MR | Zbl
[7] A. Yu. Vesnin, A.D. Mednykh, “Hyperbolic volumes of Fibonacci manifolds”, Siberian Mathematical Journal, 36:2 (1995), 235–245 | DOI | MR | Zbl