On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1023-1026
Cet article a éte moissonné depuis la source Math-Net.Ru
We present a description of metrics of revolution immersible in $\mathbb R^3$ by a discontinuum set of non-congruent isometric surfaces.
Keywords:
metric, isometric immersion, surface of revolution, set of solutions.
Mots-clés : equation
Mots-clés : equation
@article{SEMR_2021_18_2_a30,
author = {I. Kh. Sabitov},
title = {On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1023--1026},
year = {2021},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/}
}
TY - JOUR AU - I. Kh. Sabitov TI - On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1023 EP - 1026 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/ LA - ru ID - SEMR_2021_18_2_a30 ER -
I. Kh. Sabitov. On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1023-1026. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/
[1] I. Kh. Sabitov, “Local theory of the bendings of surfaces”, Geometry III. Theory of surfaces, eds. Burago Yu.D., Zalgaller V. A., Gamkrelidze R. V., Springer, Berlin, 1992, 179–250 | DOI | MR
[2] R. Sa Erp, É. Tubian, “Discrete and nondiscrete isometric deformations of surfaces in $\mathbb R^3$”, Sib. Math. J., 43:4 (2002), 714–718 | DOI | MR
[3] I. Kh. Sabitov, “Infinitesimal bendings of trough of revolution”, Math. USSR, Sb., 27:1 (1075), 103–117 | DOI | MR