On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1023-1026.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a description of metrics of revolution immersible in $\mathbb R^3$ by a discontinuum set of non-congruent isometric surfaces.
Keywords: metric, isometric immersion, surface of revolution, set of solutions.
Mots-clés : equation
@article{SEMR_2021_18_2_a30,
     author = {I. Kh. Sabitov},
     title = {On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1023--1026},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1023
EP  - 1026
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/
LA  - ru
ID  - SEMR_2021_18_2_a30
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1023-1026
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/
%G ru
%F SEMR_2021_18_2_a30
I. Kh. Sabitov. On metrics admitting a discontinuum set of non-congruent immersions in $\mathbb R^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1023-1026. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a30/

[1] I. Kh. Sabitov, “Local theory of the bendings of surfaces”, Geometry III. Theory of surfaces, eds. Burago Yu.D., Zalgaller V. A., Gamkrelidze R. V., Springer, Berlin, 1992, 179–250 | DOI | MR

[2] R. Sa Erp, É. Tubian, “Discrete and nondiscrete isometric deformations of surfaces in $\mathbb R^3$”, Sib. Math. J., 43:4 (2002), 714–718 | DOI | MR

[3] I. Kh. Sabitov, “Infinitesimal bendings of trough of revolution”, Math. USSR, Sb., 27:1 (1075), 103–117 | DOI | MR