Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a29, author = {V. A. Klyachin and N. A. Ch{\cyre}ban{\cyre}nko}, title = {On geometrical properties of continuous mappings which preserve orientation of simplices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {985--996}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/} }
TY - JOUR AU - V. A. Klyachin AU - N. A. Chеbanеnko TI - On geometrical properties of continuous mappings which preserve orientation of simplices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 985 EP - 996 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/ LA - ru ID - SEMR_2021_18_2_a29 ER -
%0 Journal Article %A V. A. Klyachin %A N. A. Chеbanеnko %T On geometrical properties of continuous mappings which preserve orientation of simplices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 985-996 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/ %G ru %F SEMR_2021_18_2_a29
V. A. Klyachin; N. A. Chеbanеnko. On geometrical properties of continuous mappings which preserve orientation of simplices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 985-996. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/
[1] I.P. Natanson, Theory of functions of a real variable, Nauka, M., 1974 | MR
[2] H. Lebesgue, “Sur le probléme de Dirichlet”, Palermo Rend., 24 (1907), 371–402 | DOI | Zbl
[3] G.D. Mostow, “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. Inst. Hautes Étud. Sci., 34 (1968), 53–104 | DOI | Zbl
[4] S.K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Sib. Math. J., 37:6 (1996), 1113–1136 | DOI | Zbl
[5] V.M. Miklyukov, Introduction in nonsmooth analysis, Izd VolSU, Volgograd, 2008
[6] V.M. Miklyukov, “Some conditions for the existence of the total differential”, Sib. Math. J., 51:4 (2010), 639–647 | DOI | Zbl
[7] R.R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Math., 72:5 (2008), 977–984 | DOI | Zbl
[8] M.F. Prokhorova, “Problems of homeomorphism arising in the theory of grid generation”, Proc. Steklov Inst. Math., 261:1 (2008), S165–S182 | Zbl
[9] A.V. Boluchevskaya, “On the quasiisometric mapping preserving simplex orientation”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 13:1(2) (2013), 20–23 | DOI | Zbl
[10] V.A. Klyachin, N.A. Chebanenko, “About linear preimages of continuous maps, that preserve orientation of triangles”, Vestn. Volgogr. Univ. Math., Phys., 2014:3 (2014), 56–60 | DOI
[11] V.A. Klyachin, N.A. Chebanenko, “On the geometric structure of the continuous mappings preserving the orientation of simplexes”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 17:3 (2017), 294–303 | DOI | Zbl
[12] S. Saks, Theory of the integral, G.E. Stechert Co., New York, 1937 | Zbl