On geometrical properties of continuous mappings which preserve orientation of simplices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 985-996.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is easy to show that if a continuous and open mapping preserves the orientation of all simplices, then it is affine. The article discusses the class of continuous, open mappings $ f: D \subset \mathbb{R}^3 \to \mathbb{R}^3$ that preserve the orientation of simplices from a given subset of the set of simplexes with vertices in the domain $ D \subset \mathbb{R}^3 $. In this paper, the questions of the geometric structure of linear transforms of such mappings are investigated. This study is based on a key property: if a map preserves the orientation of simplices from a certain subset $ B $ of the set of all simplices with vertices in $ D $, then the pre-image of a hyperplane cannot contain vertices of a simplex from $ B $. Based on the analysis of the structure of a set with such a property, it is possible to obtain results on its geometric structure. In particular, the article proved that if a continuous and open mapping preserves the orientation of a fairly wide class of simplices, then it is affine. For some special classes of triangles in $ \mathbb{R}^2 $ with a given condition on its maximum angle, the authors previously proved that the inverse image of a line is locally a graph of a function (in some case, Lipschitz) in a suitable Cartesian coordinate system.
Mots-clés : simplex, orientation of simplex
Keywords: continuous mapping, monotone function.
@article{SEMR_2021_18_2_a29,
     author = {V. A. Klyachin and N. A. Ch{\cyre}ban{\cyre}nko},
     title = {On geometrical properties of continuous mappings which preserve orientation of simplices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {985--996},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - N. A. Chеbanеnko
TI  - On geometrical properties of continuous mappings which preserve orientation of simplices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 985
EP  - 996
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/
LA  - ru
ID  - SEMR_2021_18_2_a29
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A N. A. Chеbanеnko
%T On geometrical properties of continuous mappings which preserve orientation of simplices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 985-996
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/
%G ru
%F SEMR_2021_18_2_a29
V. A. Klyachin; N. A. Chеbanеnko. On geometrical properties of continuous mappings which preserve orientation of simplices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 985-996. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a29/

[1] I.P. Natanson, Theory of functions of a real variable, Nauka, M., 1974 | MR

[2] H. Lebesgue, “Sur le probléme de Dirichlet”, Palermo Rend., 24 (1907), 371–402 | DOI | Zbl

[3] G.D. Mostow, “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. Inst. Hautes Étud. Sci., 34 (1968), 53–104 | DOI | Zbl

[4] S.K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Sib. Math. J., 37:6 (1996), 1113–1136 | DOI | Zbl

[5] V.M. Miklyukov, Introduction in nonsmooth analysis, Izd VolSU, Volgograd, 2008

[6] V.M. Miklyukov, “Some conditions for the existence of the total differential”, Sib. Math. J., 51:4 (2010), 639–647 | DOI | Zbl

[7] R.R. Salimov, “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Math., 72:5 (2008), 977–984 | DOI | Zbl

[8] M.F. Prokhorova, “Problems of homeomorphism arising in the theory of grid generation”, Proc. Steklov Inst. Math., 261:1 (2008), S165–S182 | Zbl

[9] A.V. Boluchevskaya, “On the quasiisometric mapping preserving simplex orientation”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 13:1(2) (2013), 20–23 | DOI | Zbl

[10] V.A. Klyachin, N.A. Chebanenko, “About linear preimages of continuous maps, that preserve orientation of triangles”, Vestn. Volgogr. Univ. Math., Phys., 2014:3 (2014), 56–60 | DOI

[11] V.A. Klyachin, N.A. Chebanenko, “On the geometric structure of the continuous mappings preserving the orientation of simplexes”, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform., 17:3 (2017), 294–303 | DOI | Zbl

[12] S. Saks, Theory of the integral, G.E. Stechert Co., New York, 1937 | Zbl