On the uniqueness of $ \mathcal{I}$-limits of sequences
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 744-757
Voir la notice de l'article provenant de la source Math-Net.Ru
We define the $ \mathcal{I} $-sequential topology on a topological space where $ \mathcal{I} $ denotes an ideal of the set of positive integers. We also study the relationship between $ \mathcal{I}$-separatedness and uniqueness of $ \mathcal{I}$-limits of sequences. Furthermore, we give a characterization of uniqueness of $ \mathcal{I}$- limits of sequences by $ \mathcal{I}$-closedness of sequentially $ \mathcal{I}$-compact subset.
Keywords:
$ \mathcal{I}$-convergence, $ \mathcal{I}$-sequential topology, $ \mathcal{I}$-separated, sequentially $ \mathcal{I}$-compact, $ \mathcal{I}$-bounded, sequentially $ \mathcal{I}$-continuity.
@article{SEMR_2021_18_2_a27,
author = {A. Blali and A. El Amrani and R. A. Hassani and A. Razouki},
title = {On the uniqueness of $ \mathcal{I}$-limits of sequences},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {744--757},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/}
}
TY - JOUR
AU - A. Blali
AU - A. El Amrani
AU - R. A. Hassani
AU - A. Razouki
TI - On the uniqueness of $ \mathcal{I}$-limits of sequences
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2021
SP - 744
EP - 757
VL - 18
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/
LA - en
ID - SEMR_2021_18_2_a27
ER -
%0 Journal Article
%A A. Blali
%A A. El Amrani
%A R. A. Hassani
%A A. Razouki
%T On the uniqueness of $ \mathcal{I}$-limits of sequences
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 744-757
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/
%G en
%F SEMR_2021_18_2_a27
A. Blali; A. El Amrani; R. A. Hassani; A. Razouki. On the uniqueness of $ \mathcal{I}$-limits of sequences. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 744-757. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/