On the uniqueness of $ \mathcal{I}$-limits of sequences
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 744-757.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the $ \mathcal{I} $-sequential topology on a topological space where $ \mathcal{I} $ denotes an ideal of the set of positive integers. We also study the relationship between $ \mathcal{I}$-separatedness and uniqueness of $ \mathcal{I}$-limits of sequences. Furthermore, we give a characterization of uniqueness of $ \mathcal{I}$- limits of sequences by $ \mathcal{I}$-closedness of sequentially $ \mathcal{I}$-compact subset.
Keywords: $ \mathcal{I}$-convergence, $ \mathcal{I}$-sequential topology, $ \mathcal{I}$-separated, sequentially $ \mathcal{I}$-compact, $ \mathcal{I}$-bounded, sequentially $ \mathcal{I}$-continuity.
@article{SEMR_2021_18_2_a27,
     author = {A. Blali and A. El Amrani and R. A. Hassani and A. Razouki},
     title = {On the uniqueness of $ \mathcal{I}$-limits of sequences},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {744--757},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/}
}
TY  - JOUR
AU  - A. Blali
AU  - A. El Amrani
AU  - R. A. Hassani
AU  - A. Razouki
TI  - On the uniqueness of $ \mathcal{I}$-limits of sequences
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 744
EP  - 757
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/
LA  - en
ID  - SEMR_2021_18_2_a27
ER  - 
%0 Journal Article
%A A. Blali
%A A. El Amrani
%A R. A. Hassani
%A A. Razouki
%T On the uniqueness of $ \mathcal{I}$-limits of sequences
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 744-757
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/
%G en
%F SEMR_2021_18_2_a27
A. Blali; A. El Amrani; R. A. Hassani; A. Razouki. On the uniqueness of $ \mathcal{I}$-limits of sequences. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 744-757. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a27/

[1] A.El. Amrani, “Sequentially spaces and the finest locally $ \mathbb {K} $-convex of topologies having the same onvergent sequences”, Proyecciones, 37:1 (2018), 153–169 (Antofagasta, On line) | DOI | Zbl

[2] A.K. Banerjee, A. Banerjee, $ \mathcal{I} $-convergence classes of sequences and nets in topological spaces, 2016, arXiv: 1608.03381

[3] J.R. Boone, F. Siwiec, “Sequentially quotient mappings”, Czech. Math. J., 26 (1976), 174–182 | DOI | Zbl

[4] R.C. Buck, “The measure theoretic approach to density”, Am. J. Math., 68 (1946), 560–580 | DOI | Zbl

[5] R.C. Buck, “Generalized asymptotic density”, Am. J. Math., 75 (1953), 335–346 | DOI | Zbl

[6] H. {Ç}akallı, “On G-continuity”, Comput. Math. Appl., 61:2 (2011), 313–318 | DOI | Zbl

[7] J. Červeňanskỳ, “Statistical convergence and statistical continuity”, Zborník vedeckỳch prác MtF STU, 6 (1998), 207–212

[8] K. Chandrasekharan, “Topological preliminaries”, A course on topological groups, Hindustan Book Agency, New Delhi, 1996, 1–18 | Zbl

[9] J. Connor, “The statistical and strong $p$-Cesaro convergence of sequences”, Analysis, 8:1–2 (1988), 47–63 | Zbl

[10] J. Connor, “Two valued measures and summability”, Analysis, 10:4 (1990), 373–385 | DOI | Zbl

[11] J. Connor, K.-G. Grosse-Erdmann, “Sequential definitions of continuity for real functions”, Rocky Mt. J. Math., 33:1 (2003), 93–121 | DOI | Zbl

[12] J. Connor, J. Kline, “On statistical limit points and the consistency of statistical convergence”, J. Math. Anal. Appl., 197:2 (1996), 392–399 | DOI | Zbl

[13] P. Das, “Some further results on ideal convergence in topological spaces”, Topology Appl., 159:10–11 (2012), 2621–2626 | DOI | Zbl

[14] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, “$ \mathcal{I}$ and $ \mathcal{I}^{*} $-convergence of double sequences”, Math. Slovaca, 58:5 (2008), 605–620 | DOI | Zbl

[15] P. Das, E. Sava{ş}, “On $ \mathcal{I} $-convergence of nets in locally solid Riesz spaces”, Filomat, 27:1 (2013), 89–94 | DOI | Zbl

[16] G. Di Maio, L.D. Kočinac, “Statistical convergence in topology”, Topology Appl., 156:1 (2008), 28–45 | DOI | Zbl

[17] H. Fast, “Sur la convergence statistique”, Colloq. Math., 2 (1951), 241–244 | DOI | Zbl

[18] R. Filipów, N. Mrożek, I. Recław, P. Szuca, “Ideal convergence of bounded sequences”, J. Symb. Log., 72:2 (2007), 501–512 | DOI | Zbl

[19] S. Franklin, “Spaces in which sequences suffice II”, Fundam. Math., 61 (1967), 51–56 | DOI | Zbl

[20] A. Freedman, J. Sember, “Densities and summability”, Pac. J. Math., 95 (1981), 293–305 | DOI | Zbl

[21] W. Freedman, “Convergence preserving mappings on topological groups”, Topology Appl., 154:6 (2007), 1089–1096 | DOI | Zbl

[22] J. Fridy, “Statistical limit points”, Proc. Am. Math. Soc., 118:4 (1993), 1187–1192 | DOI | Zbl

[23] D.N. Georgiou, A.C. Megaritis, G.A. Prinos, “A study on convergence and ideal convergence classes”, Topology Appl., 241 (2018), 38–49 | DOI | Zbl

[24] D. Georgiou, A. Megaritis, G. Prinos, F. Sereti, “On statistical convergence of sequences of closed sets in metric spaces”, Math. Slovaca, 71:2 (2021), 409–422 | DOI

[25] D. Georgiou, S. Iliadis, A. Megaritis, G. Prinos, “Ideal-convergence classes”, Topology Appl., 222 (2017), 217–226 | DOI | Zbl

[26] B. Hazarika, A. Esi, “Some ideal-convergent generalized difference sequences in a locally convex space defined by a Musielak-Orlicz function”, Mat. Stud., 42:2 (2014), 195–208 | Zbl

[27] W.-C. Hong, S.-H. Kweon, “On the uniqueness of sequential limits in sequential convergence spaces”, East Asian Math. J., 10:2 (1994), 271–277

[28] A.J. Insel, “A note on the Hausdorff separation property in first countable spaces”, Am. Math. Mon., 72 (1965), 289–290 | DOI | Zbl

[29] P. Kostyrko, M. Máčaj, T. Šalát, M. Sleziak, “$\mathcal{I}$-convergence and extremal $ \mathcal{I} $-limit points”, Math. Slovaca, 55:4 (2005), 443–464 | Zbl

[30] P. Kostyrko, T. Šalát, W. Wilczyński, “$\mathcal{I}$-convergence”, Real Anal. Exch., 26:2 (2000), 669–685 | DOI | Zbl

[31] B.K. Lahiri, P. Das, “$ \mathcal{I} $ and $ \mathcal{I}^{*} $-convergence in topological spaces”, Math. Bohem., 130:2 (2005), 153–160 | DOI | Zbl

[32] O. Mucuk, T. {Ş}ahan, “On g-sequential Continuity”, Filomat, 28:6 (2014), 1181–1189 ; (2011), arXiv: 1201.1795 | DOI | Zbl

[33] M. Mursaleen, S. Mohiuddine, “On ideal convergence in probabilistic normed spaces”, Math. Slovaca, 62:1 (2012), 49–62 | DOI | Zbl

[34] A. Nabiev, S. Pehlivan, M. Gürdal, “On $ \mathcal{I} $-Cauchy sequences”, Taiwanese J. Math., 11:2 (2007), 569–576 | DOI | Zbl

[35] H.-H. Ostmann, Additive Number Theory: Part One General Investigations, Springer-Verlag, Berlin etc., 1956 | Zbl

[36] S.K. Pal, “$ \mathcal{I} $-sequential topological spaces”, Appl. Math. E-Notes, 14 (2014), 236–241 | Zbl

[37] V. Renukadevi, B. Prakash, “$ \mathcal{I} $-Fréchet-Urysohn spaces”, Math. Morav., 20:2 (2016), 87–97 | DOI | Zbl

[38] V. Renukadevi, P. Vijayashanthi, “On $\mathcal{I}$-Fréchet-Urysohn spaces and sequential $\mathcal{I}$-convergence groups”, Math. Morav., 23:1 (2019), 119–129 | DOI | MR | Zbl

[39] T. Šalát, “On statistically convergent sequences of real numbers”, Math. Slovaca, 30 (1980), 139–150 | Zbl

[40] T. Šalát, R. Tijdeman, “On density measures of sets of positive integers”, Topics in Classical Number Theory, Colloq. Math. Soc. Janos Bolyai, 34, 1984, 1445–1457 | Zbl

[41] T. Šalát, B.C. Tripathy, M. Ziman, “On some properties of $\mathcal{I}$-convergence”, Tatra Mt. Math. Publ., 28:2 (2004), 279–286 | Zbl

[42] T. Šalát, B.C. Tripathy, M. Ziman, “On $ \mathcal{I} $-convergence field”, Ital. J. Pure Appl. Math., 17 (2005), 45–54 | Zbl

[43] T. Šalát, B.C. Tripathy, M. Ziman, “On $\mathcal{I}$-convergence field”, Ital. J. Pure Appl. Math., 17 (2005), 45–54 | Zbl

[44] I. Schoenberg, “The integrability of certain functions and related summability methods. I, II”, Am. Math. Mon., 66 (1959), 361–775 | DOI | Zbl

[45] B.C. Tripathy, M. Sen, S. Nath, “$\mathcal{I} $-convergence in probabilistic $ n $-normed space”, Soft Comput., 16:6 (2012), 1021–1027 | DOI | Zbl

[46] X. Zhou, L. Liu, S. Lin, “On topological spaces defined by $\mathcal{I}$-convergence”, Bull. Iran. Math. Soc., 46:3 (2020), 675–692 | DOI | Zbl