On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1667-1688.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a non-homogeneous compound renewal process, which is also known as a cumulative renewal process, or a continuous time random walk. We suppose that the jump sizes have zero means and finite variances, whereas the renewal-times has moments of order greater than 3/2. We investigate the asymptotic behaviour of the probability that this process is staying above a moving non-increasing boundary up to time $T$ which tends to infinity. Our main result is a generalization of a similar one for homogeneous compound renewal process, due to A. Sakhanenko, V. Wachtel, E. Prokopenko, A. Shelepova (2021).
Keywords: compound renewal process, continuous time random walk, non-homogeneous process, boundary crossing problems, moving boundaries, exit times.
@article{SEMR_2021_18_2_a25,
     author = {A. D. Shelepova and A. I. Sakhanenko},
     title = {On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1667--1688},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/}
}
TY  - JOUR
AU  - A. D. Shelepova
AU  - A. I. Sakhanenko
TI  - On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1667
EP  - 1688
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/
LA  - ru
ID  - SEMR_2021_18_2_a25
ER  - 
%0 Journal Article
%A A. D. Shelepova
%A A. I. Sakhanenko
%T On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1667-1688
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/
%G ru
%F SEMR_2021_18_2_a25
A. D. Shelepova; A. I. Sakhanenko. On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1667-1688. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/

[1] A.A. Borovkov, Compound Renewal Processes, Russ. Acad. Sci., M., 2020

[2] A.A. Borovkov, Probability theory, Gordon Breach, Abingdon, Oxon, 1998 | MR | Zbl

[3] R. Kutner, J. Masoliver, “The continuous time random walk, still trendy: fifty-year history, state of art and outlook”, The European Physical Journal B, 90 (2017), 50 | DOI | MR

[4] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl

[5] R.A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[6] A.I. Sakhanenko, V.I. Wachtel, E.I. Prokopenko, A.D. Shelepova, “On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 9–26 | DOI | MR | Zbl

[7] A.I. Sakhanenko, “On Borovkov's estimate in the invariance principle”, Sib. Èlektron. Mat. Izv., 16 (2019), 1776–1784 | DOI | MR | Zbl