Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a25, author = {A. D. Shelepova and A. I. Sakhanenko}, title = {On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1667--1688}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/} }
TY - JOUR AU - A. D. Shelepova AU - A. I. Sakhanenko TI - On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1667 EP - 1688 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/ LA - ru ID - SEMR_2021_18_2_a25 ER -
%0 Journal Article %A A. D. Shelepova %A A. I. Sakhanenko %T On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1667-1688 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/ %G ru %F SEMR_2021_18_2_a25
A. D. Shelepova; A. I. Sakhanenko. On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1667-1688. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/
[1] A.A. Borovkov, Compound Renewal Processes, Russ. Acad. Sci., M., 2020
[2] A.A. Borovkov, Probability theory, Gordon Breach, Abingdon, Oxon, 1998 | MR | Zbl
[3] R. Kutner, J. Masoliver, “The continuous time random walk, still trendy: fifty-year history, state of art and outlook”, The European Physical Journal B, 90 (2017), 50 | DOI | MR
[4] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl
[5] R.A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Relat. Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl
[6] A.I. Sakhanenko, V.I. Wachtel, E.I. Prokopenko, A.D. Shelepova, “On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 9–26 | DOI | MR | Zbl
[7] A.I. Sakhanenko, “On Borovkov's estimate in the invariance principle”, Sib. Èlektron. Mat. Izv., 16 (2019), 1776–1784 | DOI | MR | Zbl