Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a25, author = {A. D. Shelepova and A. I. Sakhanenko}, title = {On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1667--1688}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/} }
TY - JOUR AU - A. D. Shelepova AU - A. I. Sakhanenko TI - On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1667 EP - 1688 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/ LA - ru ID - SEMR_2021_18_2_a25 ER -
%0 Journal Article %A A. D. Shelepova %A A. I. Sakhanenko %T On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1667-1688 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/ %G ru %F SEMR_2021_18_2_a25
A. D. Shelepova; A. I. Sakhanenko. On the asymptotics of the probability to stay above a non-increasing boundary for a non-homogeneous compound renewal process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1667-1688. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a25/