Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a24, author = {A. Sakhanenko and S. Foss}, title = {On representations and simulation of conditioned random walks on integer lattices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1556--1571}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/} }
TY - JOUR AU - A. Sakhanenko AU - S. Foss TI - On representations and simulation of conditioned random walks on integer lattices JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1556 EP - 1571 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/ LA - en ID - SEMR_2021_18_2_a24 ER -
%0 Journal Article %A A. Sakhanenko %A S. Foss %T On representations and simulation of conditioned random walks on integer lattices %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1556-1571 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/ %G en %F SEMR_2021_18_2_a24
A. Sakhanenko; S. Foss. On representations and simulation of conditioned random walks on integer lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1556-1571. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/
[1] S. Foss, A. Sakhanenko, “Structural properties of conditioned random walks on integer lattices with random local constraints”, Prog. Probab., 77 (2021), 407–438 | DOI | MR | Zbl
[2] E. Bolthausen, J.-D. Deuschel, G. Giacomin, “Entropic repulsion and the maximum of the two-dimensional harmonic crystal”, Ann. Probab., 29:4 (2001), 1670–1692 | DOI | MR | Zbl
[3] I. Benjamini, N. Berectycki, “Random paths with bounded local time”, J. Eur. Math. Soc., 12:4 (2010), 819–854 | DOI | MR | Zbl
[4] A. Sakhanenko, S. Foss, “On the structure of a conditioned random walk on the integers with bounded local times”, Sib. Èlektron. Mat. Izv., 14 (2017), 1265–1278 | MR | Zbl
[5] I. Benjamini, N. Berectycki, “An integral test for the transience of a Brownian path with limited local time”, Ann. Inst. Henri Poincaré, Probab. Stat., 47:2 (2011), 539–558 | MR | Zbl
[6] M. Kolb, M. Savov, “Transience and recurrence of a Brownian path with limited local time”, Ann. Probab., 44:6 (2016), 4083–4132 | DOI | MR | Zbl
[7] A. Barker, “Transience and recurrence of Markov processes with constrained local time”, ALEA, Lat. Am. J. Probab. Math. Stat., 17:2 (2020), 993–1045 | DOI | MR | Zbl
[8] N. Berestycki, N. Gantert, P. Mörters, N. Sidorova, “Galton-Watson trees with vanishing martingale limits”, J. Stat. Phys., 155:4 (2014), 737–762 | DOI | MR | Zbl
[9] J. Bertoin, R.A. Doney, “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167 | DOI | MR | Zbl
[10] S. Asmussen, “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the $GI/G/1$ queue”, Adv. Appl. Probab., 14:1 (1982), 143–170 | DOI | MR | Zbl
[11] H. Tanaka, “Time reversal of random walks in one dimension”, Tokyo J. f Math., 12:1 (1989), 159–174 | MR | Zbl
[12] V.I. Afanasyev, J. Geiger, G. Kersting, V.A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[13] D. Denisov, S. Foss, T. Konstantopoulos, “Limit theorems for a random directed slab graph”, Ann. Appl.Probab., 22:2 (2012), 702–733 | DOI | MR | Zbl