On representations and simulation of conditioned random walks on integer lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1556-1571.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a random walk on a multidimensional integer lattice with random bounds on local times. We introduce a family of auxiliary “accompanying” processes that have regenerative structures and play key roles in our analysis. We obtain a number of representations for the distribution of the random walk in terms of similar distributions of the “accompanying” processes. Based on that, we obtain representations for the conditional distribution of the random walk, conditioned on the event that it hits a high level before its death. Under more restrictive assumptions a representation of such type has been obtained earlier by the same authors in a recent paper published in the Springer series on Progress in Probability, 77 (2021), where a certain “limiting” process was used in place of “accompanying” processes of the present paper.
Keywords: conditioned random walk, bounded local times, regenerative sequence, potential regeneration, separating levels, skip-free distributions, accompanying process.
@article{SEMR_2021_18_2_a24,
     author = {A. Sakhanenko and S. Foss},
     title = {On representations and simulation of conditioned random walks on integer lattices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1556--1571},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/}
}
TY  - JOUR
AU  - A. Sakhanenko
AU  - S. Foss
TI  - On representations and simulation of conditioned random walks on integer lattices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1556
EP  - 1571
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/
LA  - en
ID  - SEMR_2021_18_2_a24
ER  - 
%0 Journal Article
%A A. Sakhanenko
%A S. Foss
%T On representations and simulation of conditioned random walks on integer lattices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1556-1571
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/
%G en
%F SEMR_2021_18_2_a24
A. Sakhanenko; S. Foss. On representations and simulation of conditioned random walks on integer lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1556-1571. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a24/

[1] S. Foss, A. Sakhanenko, “Structural properties of conditioned random walks on integer lattices with random local constraints”, Prog. Probab., 77 (2021), 407–438 | DOI | MR | Zbl

[2] E. Bolthausen, J.-D. Deuschel, G. Giacomin, “Entropic repulsion and the maximum of the two-dimensional harmonic crystal”, Ann. Probab., 29:4 (2001), 1670–1692 | DOI | MR | Zbl

[3] I. Benjamini, N. Berectycki, “Random paths with bounded local time”, J. Eur. Math. Soc., 12:4 (2010), 819–854 | DOI | MR | Zbl

[4] A. Sakhanenko, S. Foss, “On the structure of a conditioned random walk on the integers with bounded local times”, Sib. Èlektron. Mat. Izv., 14 (2017), 1265–1278 | MR | Zbl

[5] I. Benjamini, N. Berectycki, “An integral test for the transience of a Brownian path with limited local time”, Ann. Inst. Henri Poincaré, Probab. Stat., 47:2 (2011), 539–558 | MR | Zbl

[6] M. Kolb, M. Savov, “Transience and recurrence of a Brownian path with limited local time”, Ann. Probab., 44:6 (2016), 4083–4132 | DOI | MR | Zbl

[7] A. Barker, “Transience and recurrence of Markov processes with constrained local time”, ALEA, Lat. Am. J. Probab. Math. Stat., 17:2 (2020), 993–1045 | DOI | MR | Zbl

[8] N. Berestycki, N. Gantert, P. Mörters, N. Sidorova, “Galton-Watson trees with vanishing martingale limits”, J. Stat. Phys., 155:4 (2014), 737–762 | DOI | MR | Zbl

[9] J. Bertoin, R.A. Doney, “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167 | DOI | MR | Zbl

[10] S. Asmussen, “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the $GI/G/1$ queue”, Adv. Appl. Probab., 14:1 (1982), 143–170 | DOI | MR | Zbl

[11] H. Tanaka, “Time reversal of random walks in one dimension”, Tokyo J. f Math., 12:1 (1989), 159–174 | MR | Zbl

[12] V.I. Afanasyev, J. Geiger, G. Kersting, V.A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[13] D. Denisov, S. Foss, T. Konstantopoulos, “Limit theorems for a random directed slab graph”, Ann. Appl.Probab., 22:2 (2012), 702–733 | DOI | MR | Zbl