Asymptotics of sums of regression residuals under multiple ordering of regressors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1482-1492.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems about the Gaussian asymptotics of an empirical bridge built from residuals of a linear model under multiple regressor orderings. We study the testing of the hypothesis of a linear model for the components of a random vector: one of the components is a linear combination of the others up to an error that does not depend on the other components of the random vector. The independent copies of the random vector are sequentially ordered in ascending order of several of its components. The result is a sequence of vectors of higher dimension, consisting of induced order statistics (concomitants) corresponding to different orderings. For this sequence of vectors, without the assumption of a linear model for the components, we prove a lemma of weak convergence of the distributions of an appropriately centered and normalized process to a centered Gaussian process with almost surely continuous trajectories. Assuming a linear relationship of the components, standard least squares estimates are used to compute regression residuals, that is, the differences between response values and the predicted ones by the linear model. We prove a theorem of weak convergence of the process of sums of of regression residuals under the necessary normalization to a centered Gaussian process.
Keywords: weak convergence, regression residuals.
Mots-clés : Concomitants, copula
@article{SEMR_2021_18_2_a22,
     author = {M. G. Chebunin and A. P. Kovalevskii},
     title = {Asymptotics of sums of regression residuals under multiple ordering of regressors},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1482--1492},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/}
}
TY  - JOUR
AU  - M. G. Chebunin
AU  - A. P. Kovalevskii
TI  - Asymptotics of sums of regression residuals under multiple ordering of regressors
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1482
EP  - 1492
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/
LA  - en
ID  - SEMR_2021_18_2_a22
ER  - 
%0 Journal Article
%A M. G. Chebunin
%A A. P. Kovalevskii
%T Asymptotics of sums of regression residuals under multiple ordering of regressors
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1482-1492
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/
%G en
%F SEMR_2021_18_2_a22
M. G. Chebunin; A. P. Kovalevskii. Asymptotics of sums of regression residuals under multiple ordering of regressors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1482-1492. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/

[1] Bickel P. J., Wichura M. J., “Convergence Criteria for Multiparameter Stochastic Processes and Some Applications”, Ann. Math. Stat., 42:5 (1971), 1656–70 | DOI | MR

[2] Bischoff W., “A functional central limit theorem for regression models”, Ann. Stat., 26 (1998), 1398–1410 | DOI | MR | Zbl

[3] Brodsky B., Darkhovsky B., “Asymptotically optimal methods of change-point detection for composite hypotheses”, Journal of Statistical Planning and Inference, 133:1 (2005), 123–138 | DOI | MR | Zbl

[4] Chakrabarty A., Chebunin M., Kovalevskii A., Pupyshev I. M., Zakrevskaya N. S., Zhou Q., “A statistical test for correspondence of texts to the Zipf - Mandelbrot law”, Siberian Electronic Mathematical Reports, 17 (2020), 1959–1974 | MR | Zbl

[5] Csorgo M., Horváth L., Limit Theorems in Change-Point Analysis, Wiley, NY, 1997 | MR | Zbl

[6] Davydov Y., Egorov V., “Functional limit theorems for induced order statistics”, Mathematical Methods of Statistics, 9:3 (2000), 297–313 | MR | Zbl

[7] Davydov Y., Zitikis R., “On weak convergence of random fields”, Annals of the Institute of Statistical Mathematics, 60 (2008), 345–365 | DOI | MR | Zbl

[8] Dudley R.M., “Measures on non-separable metric spaces”, Illinois Journal of Mathematics, 11 (1967), 449–453 | DOI | MR | Zbl

[9] Kovalevskii A. P., Shatalin E. V., “Asymptotics of Sums of Residuals of One-Parameter Linear Regression on Order Statistics”, Theory of Probability and its Applications, 59:3 (2015), 375–387 | DOI | MR | Zbl

[10] Kovalevskii A., Shatalin E., “A limit process for a sequence of partial sums of residuals of a simple regression on order statistics”, Probability and Mathematical Statistics, 36:1 (2016), 113–120 | MR | Zbl

[11] Kovalevskii A. P., “Asymptotics of an empirical bridge of regression on induced order statistics”, Siberian Electronic Mathematical Reports, 17 (2020), 954–963 | MR | Zbl

[12] Lorden G., “Procedures for Reacting to a Change in Distribution”, Ann. Math. Statist., 42:6 (1971), 1897–1908 | DOI | MR | Zbl

[13] MacNeill I. B., “Limit processes for sequences of partial sums of regression residuals”, Ann. Prob., 6 (1978), 695–698 | DOI | MR | Zbl

[14] MacNeill I. B., Jandhyala V. K., Kaul A., Fotopoulos S. B., “Multiple change-point models for time series”, Environmetrics, 31:1 (2020), e2593 | DOI | MR

[15] Moustakides G. V., “Optimal Stopping Times for Detecting Changes in Distributions”, Ann. Statist., 14:4 (1986), 1379–1387 | DOI | MR | Zbl

[16] Ossiander M., “A Central limit theorem under metric entropy with $L_2$ bracketing”, Ann. Prob., 15 (1987), 897–919 | DOI | MR | Zbl

[17] Page E. S., “Continuous inspection schemes”, Biometrika, 41:1–2 (1954), 100–115 | DOI | MR | Zbl

[18] Rao C., “Sequential Tests of Null Hypotheses”, Sankhya, 10:4 (1950), 361–370 | MR | Zbl

[19] Shiryaev A. N., “Minimax Optimality of the Method of Cumulative Sum (Cusum) in the Case of Continuous Time”, Russian Mathematical Surveys, 51 (1996), 750–751 | DOI | MR | Zbl

[20] Shorack G., Wellner J., Empirical processes with applications to statistics, Wiley, N.Y., 1986 | MR | Zbl

[21] Straf M. L., “Weak convergence of stochastic processes with several parameters”, Proc. Sixth Berkely Symp. Math. Statist. Prob., v. 2, 1972, 187–222 | MR