Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2021_18_2_a22, author = {M. G. Chebunin and A. P. Kovalevskii}, title = {Asymptotics of sums of regression residuals under multiple ordering of regressors}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1482--1492}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/} }
TY - JOUR AU - M. G. Chebunin AU - A. P. Kovalevskii TI - Asymptotics of sums of regression residuals under multiple ordering of regressors JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2021 SP - 1482 EP - 1492 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/ LA - en ID - SEMR_2021_18_2_a22 ER -
%0 Journal Article %A M. G. Chebunin %A A. P. Kovalevskii %T Asymptotics of sums of regression residuals under multiple ordering of regressors %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2021 %P 1482-1492 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/ %G en %F SEMR_2021_18_2_a22
M. G. Chebunin; A. P. Kovalevskii. Asymptotics of sums of regression residuals under multiple ordering of regressors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1482-1492. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a22/
[1] Bickel P. J., Wichura M. J., “Convergence Criteria for Multiparameter Stochastic Processes and Some Applications”, Ann. Math. Stat., 42:5 (1971), 1656–70 | DOI | MR
[2] Bischoff W., “A functional central limit theorem for regression models”, Ann. Stat., 26 (1998), 1398–1410 | DOI | MR | Zbl
[3] Brodsky B., Darkhovsky B., “Asymptotically optimal methods of change-point detection for composite hypotheses”, Journal of Statistical Planning and Inference, 133:1 (2005), 123–138 | DOI | MR | Zbl
[4] Chakrabarty A., Chebunin M., Kovalevskii A., Pupyshev I. M., Zakrevskaya N. S., Zhou Q., “A statistical test for correspondence of texts to the Zipf - Mandelbrot law”, Siberian Electronic Mathematical Reports, 17 (2020), 1959–1974 | MR | Zbl
[5] Csorgo M., Horváth L., Limit Theorems in Change-Point Analysis, Wiley, NY, 1997 | MR | Zbl
[6] Davydov Y., Egorov V., “Functional limit theorems for induced order statistics”, Mathematical Methods of Statistics, 9:3 (2000), 297–313 | MR | Zbl
[7] Davydov Y., Zitikis R., “On weak convergence of random fields”, Annals of the Institute of Statistical Mathematics, 60 (2008), 345–365 | DOI | MR | Zbl
[8] Dudley R.M., “Measures on non-separable metric spaces”, Illinois Journal of Mathematics, 11 (1967), 449–453 | DOI | MR | Zbl
[9] Kovalevskii A. P., Shatalin E. V., “Asymptotics of Sums of Residuals of One-Parameter Linear Regression on Order Statistics”, Theory of Probability and its Applications, 59:3 (2015), 375–387 | DOI | MR | Zbl
[10] Kovalevskii A., Shatalin E., “A limit process for a sequence of partial sums of residuals of a simple regression on order statistics”, Probability and Mathematical Statistics, 36:1 (2016), 113–120 | MR | Zbl
[11] Kovalevskii A. P., “Asymptotics of an empirical bridge of regression on induced order statistics”, Siberian Electronic Mathematical Reports, 17 (2020), 954–963 | MR | Zbl
[12] Lorden G., “Procedures for Reacting to a Change in Distribution”, Ann. Math. Statist., 42:6 (1971), 1897–1908 | DOI | MR | Zbl
[13] MacNeill I. B., “Limit processes for sequences of partial sums of regression residuals”, Ann. Prob., 6 (1978), 695–698 | DOI | MR | Zbl
[14] MacNeill I. B., Jandhyala V. K., Kaul A., Fotopoulos S. B., “Multiple change-point models for time series”, Environmetrics, 31:1 (2020), e2593 | DOI | MR
[15] Moustakides G. V., “Optimal Stopping Times for Detecting Changes in Distributions”, Ann. Statist., 14:4 (1986), 1379–1387 | DOI | MR | Zbl
[16] Ossiander M., “A Central limit theorem under metric entropy with $L_2$ bracketing”, Ann. Prob., 15 (1987), 897–919 | DOI | MR | Zbl
[17] Page E. S., “Continuous inspection schemes”, Biometrika, 41:1–2 (1954), 100–115 | DOI | MR | Zbl
[18] Rao C., “Sequential Tests of Null Hypotheses”, Sankhya, 10:4 (1950), 361–370 | MR | Zbl
[19] Shiryaev A. N., “Minimax Optimality of the Method of Cumulative Sum (Cusum) in the Case of Continuous Time”, Russian Mathematical Surveys, 51 (1996), 750–751 | DOI | MR | Zbl
[20] Shorack G., Wellner J., Empirical processes with applications to statistics, Wiley, N.Y., 1986 | MR | Zbl
[21] Straf M. L., “Weak convergence of stochastic processes with several parameters”, Proc. Sixth Berkely Symp. Math. Statist. Prob., v. 2, 1972, 187–222 | MR