Remarks on invariance principle for one-parametric recursive residuals
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1058-1074.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a linear regression model with one unknown parameter. The idea of recursive regression residuals is to estimate the regression parameter at each moment on the base of previous variables. Therefore the distribution of recursive residuals does not depend on the parameter. We investigate conditions for the weak convergence of the process of sums of recursive residuals, properly normalized, to a standard Wiener process. We obtain new conditions, which are better than ones in Sen (1982). The recursive residuals were introduced by Brown, Durbin and Evans (1975). Such residuals are the useful instrument for testing hypotheses about linear regression. Our results give opportunity to use correctly recursive residuals for a wide class of regression sequences, including sinusoidal and i.i.d. bounded.
Keywords: linear regression, recursive residuals, weak convergence, Wiener process.
@article{SEMR_2021_18_2_a20,
     author = {A. Sakhanenko and A. Kovalevskii and A. Shelepova},
     title = {Remarks on invariance principle for one-parametric recursive residuals},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1058--1074},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a20/}
}
TY  - JOUR
AU  - A. Sakhanenko
AU  - A. Kovalevskii
AU  - A. Shelepova
TI  - Remarks on invariance principle for one-parametric recursive residuals
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2021
SP  - 1058
EP  - 1074
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a20/
LA  - en
ID  - SEMR_2021_18_2_a20
ER  - 
%0 Journal Article
%A A. Sakhanenko
%A A. Kovalevskii
%A A. Shelepova
%T Remarks on invariance principle for one-parametric recursive residuals
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2021
%P 1058-1074
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a20/
%G en
%F SEMR_2021_18_2_a20
A. Sakhanenko; A. Kovalevskii; A. Shelepova. Remarks on invariance principle for one-parametric recursive residuals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 18 (2021) no. 2, pp. 1058-1074. http://geodesic.mathdoc.fr/item/SEMR_2021_18_2_a20/

[1] W. Bischoff, “A functional central limit theorem for regression models”, Ann. Stat., 26:4 (1998), 1398–1410 | DOI | Zbl

[2] W. Bischoff, “On designs for recursive least squares residuals to detect alternatives”, mODa 11 – Advances in Model-Oriented Design and Analysis, Contributions to Statistics, eds. J. Kunert, C.H. Müller, A.C. Atkinson, Springer, 2016, 37–45 | DOI

[3] R.L. Brown, J. Durbin, J.M. Evans, “Techniques for testing the constancy of regression relationships over time. Discussion”, J. R. Stat. Soc., Ser. B, 37:2 (1975), 149–192 | Zbl

[4] J. Hájek, Z. Šidák, Theory of rank tests, Academic Press, New York–London, 1967 | Zbl

[5] I.B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1978), 695–698 | DOI | Zbl

[6] F.Móricz, “Moment inequalities and the strong laws of large numbers”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 35 (1976), 299–314 | DOI | Zbl

[7] P.K. Sen, “Invariance principles for recursive residuals”, Ann. Stat., 10:1 (1982), 307–312 | DOI | Zbl

[8] A. Zeileis, F. Leisch, K. Hornik, Ch. Kleiber, “strucchange: An R package for testing for structural change in linear regression models”, J. Stat. Softw., 7:2 (2002), 1–38 | DOI